# Use of retrotrajectories to identify the source of an odour

Prolor

Carlos N. Díaz Jiménez carlosdiaz@prolor.net

## AM I HAVING ODOUR COMPLAINTS TOMORROW?

# Increase my chemical dosing

T-801

T-802

1011 - 61

# Increase the amount of fuel burning odorants



# Program my processes



## AM I NOT HAVING ODOUR COMPLAINTS TOMORROW?

PrOlor

# Decrease Incluse my chemical dosing

T-801

T-802

1011 - 61

# Decrease Increase the amount of fuel burning odorants

# No need to... Program my processes



PrOlor

Case Study 1. PROLOR in an animal by-products rendering plant with a previous record of odour complaints



## Prolor









# 2013

Stop odours!!!!

A YEAR AFTER



#### TRIPLICATES FOR EACH SOURCE

PrOlor



#### DETERMINATION OF ODOUR CONCENTRATION EN 13725



Cluster LINUX >30 processors >48 Gigas RAM and scalable!!



### **COMPARATIVE DATA**

| PrOlor | Complaint |                          | 2.1 ou <sub>e</sub> /m <sup>3</sup> |
|--------|-----------|--------------------------|-------------------------------------|
| Yes    | No        | ×                        |                                     |
|        | Yes       | Odour<br>Coincidence     | Odour<br>+                          |
| No     | No        | Non-odour<br>Coincidence | Non-odour<br>Coincidence            |
|        | Yes       | ×                        |                                     |

#### PERFORMANCE OF PROLOR PREDICTIONS AT DIFFERENT HOURLY INTERVALS REGARDING THE INCIDENTS RECORDED

| 2.1 ou <sub>E</sub> /m³                    | Odour<br>Coincidence | Non-odour<br>Coincidence | Odour<br>+<br>Non-odour<br>Coincidence |
|--------------------------------------------|----------------------|--------------------------|----------------------------------------|
| At the exact time of the incident recorded | 23.5%                | 97.7%                    | 96.6%                                  |
| Deviation of $\pm 1$ hour                  | 35.3%                | 100%                     | 99.0%                                  |
| Deviation of $\pm 2$ hours                 | 41.2%                | 100%                     | 99.1%                                  |

#### PERFORMANCE OF PROLOR PREDICTIONS AT DIFFERENT HOURLY INTERVALS REGARDING THE INCIDENTS RECORDED

| > 0 ou <sub>E</sub> /m³                    | Odour<br>Coincidence | Non-odour<br>Coincidence | Odour<br>+<br>Non-odour<br>Coincidence |
|--------------------------------------------|----------------------|--------------------------|----------------------------------------|
| At the exact time of the incident recorded | 4.55%                | 98.1%                    | 73.2%                                  |
| Deviation of $\pm 1$ hour                  | 12.1%                | 100%                     | 76.6%                                  |
| Deviation of ±2 hours                      | 17.9%                | 100%                     | 78.1%                                  |









#### WE INCREASED THE WRF RESOLUTION

#### WE APPLIED A PEAK TO MEAN RATIO





## **COMPARATIVE DATA**

|     | Prolor |                      | > 0 ou <sub>e</sub> /m³ |
|-----|--------|----------------------|-------------------------|
| Yes | No     | ×                    |                         |
|     | Yes    | Odour<br>Coincidence | 73,5%                   |



## Work in progress



■ Post-proceso ■ WRF



#### Animal By-products Rendering plant

Without PrOlor







65.840 €/year in

natural gas

Savings of **134.160 €** 

200.000 €/year in natural gas

23

Case Study 2. Use of retro-trajectories to identify the source of some odours

## **Partnership with NASAPP**

## PrOlor



Salar a Land



















## **Empower your image**



Good image



Environmentally responsible



Smart industry



### CONCLUSIONS

- PROLOR forecasts odour incidents several <u>days before they</u> <u>happen</u>.
- In August 2014 a <u>Rendering plant implemented</u> a pilot study with the software PROLOR. If this plant had optimized its process with PrOlor, it would have <u>saved 67%</u> of fuel expenses.
- PROLOR was able to forecast adequately in a <u>73,5% of the</u> <u>incidents</u>.
- PROLOR + NASAPP. In 2017, retro-trajectories were able to identify the source of odour complaints from two Urban Waste Companies.



# Thank you!

Carlos N. Díaz Jiménez carlosdiaz@prolor.net

www.prolor.net