CALGARY ODOUR CONFERENCE

4 - 5 December, 2018

Jennifer Barclay

Dispersion Modelling Advantages and Complexities

ASG ATMOSPI

DIFFICULTIES WITH ODOUR MODELLING Good output requires (1) modeller skills, (2) quality meteorological data and, (3) reliable sampling and emission rates Can be seen as costly Odour complaints are usually near field, dispersion not yet occurred. Proper representation of source and OUER is important Poor meteorology, bad sampling, poor emissions = bad output Worst case odours occur on matter of seconds, beyond range of hourly time step of models, such as AERMOD Worst case odour dispersion - calm conditions – difficult for models Over or under predictions of concentrations due to model switch choice and model choice, esp. area sources Lots of model options, lack of understanding.

METEOROLOGY
 Good meteorology is very important for dispersion models Confidence in model output increases significantly with good (on-site) data On-site tower, small cost for lots of information (wind speed, dir, temp) All local conditions are embedded in the data With nearby representative data, simple 1D model may work well. But, with no data may need 3D approach to develop met. at site Worst conditions for most odour sources is calm and light winds, fumigation, stagnation and re-circulation (some models intolerant to calms) Each application site is unique Uniform (steady-state) met. conditions are only applicable for a few kms, more so in flat terrain away from coast Even with a unit OER, good met. model input will still give accurate information and complexity of the securate information and complexity of the securate information and complexity.
frequencies of exceedance
 footprint of ou concentration and likely worst case
 validate walk abouts and break out events

Leve	el of Meteorological Da	ta Requirements and E	Effort
Effort Level Little (1), Significant (3)	Level 1	Level 2	Level 3
Model	Ausplume, ISC	AERMET for AERMOD	Calmet for CALPUFF
Steady-state or non- steady state	Steady-State	Steady-State	Non-Steady State
1, 2 or 3 Dimensional meteorological data	1D	2D	3D
Single or multiple surface met stations	single	single	multiple
Single or multiple upper air stations	none	single	multiple
Applicability	< 5 km	< 10 km	0 – hundreds km
Suitability	Flat, Inland	Undulating, Inland	Complex terrain and at Coast
Nuisance Expectation	No	Minimal	Substantial
Expectation of Complaints	None	Minimal	Substantial
Source type	Single source	Single to few co-located sources	Any number of sources and, complex sources e.g. Pulp and Paper Mil

 Odour associated wit WAS 	h dewatered s	ludge significantly h	nigher than fresh
Parameter	Fresh WAS	Dewatered WAS	Dewatered WAS - 4 days
Hydrogen Sulphide	ND ¹	4.1	19
Mercaptans	ND1	2.5	12
Ammonia	ND1	0.91	ND
VOC	0.6	0.3	0.2
DMS	0.5	0.92	4.9
WAS – waste activated sludge Stantec, Odour Course, Brisbane Marc	h, 2018		

	WWTP source	Wind Tunnel Hood	Isolation Flux Hood	WT/IFH ratio	
	1	1.359	0.062	21.9	
	2	3.054	0.065	47.2	
	3	1.747	0.050	34.8	
	4	3.090	0.129	24.0	
	5	3.682	0.129	28.6	
	6	6.965	0.977	7.1	
	7	5.675	2.035	2.7	
	8	9.471	1.139	8.3	
	9	3.527	1.456	2.4	
	(from T Schulz, AW	'A Odour Master Cl	ass, Sydney 2013)		
Up to 4-fold d	ifferences b	etween isola	ted flux hoo	d and tunnel	hood

REGULATORY MODELS FOR ODOURS

ALPUFF – US EPA guideline model for all r-field applications (> 50km) and, all near- id applications in complex environments here the steady state assumption does not uply (April 15, 2003) ALPUFF – (Version 5.85), Removed from
ALPUFF – (Version 5.85) Removed from
s EPA, Appendix W guideline model anuary, 2017)
opendix W (2017) - states. The use of ALPUFF in the near field as an alternative odel for situations involving complex terrain id complex winds has not changed by the moval of CALPUFF as a preferred model in opendix A

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

MODEL APPLICABILITY STEADY-STATE (AERMOD) vs NON-STEADY-STATE (CALPUFF)

Feature	Feature Steady State AERMOD	
Causality effects considered?	No – plume extend to infinity	Yes
Spatial variability of surface characteristics	Land use variability allowed in wind sectors centered at met. station	Full variability
Horizontal wind variability	None. Single station and uniform winds	Full variability
Calm winds	Not treated –	Calm winds treated
Mass accumulation during stagnation. Memory?	No. No memory of pollutants emitted during previous hours	Retains previous hours emissions
Coastal effects, fumigation, complex terrain	No coastal TIBL or fumigation algorithm, not suitable complex terrain	Full coastal effects Suitable Complex terrain

