PRAMP 2015 - 2016 Annual Report

October 18, 2017 Prepared by Lily Lin & Michael Bisaga PRAMP Technical Program Managers

CONTENTS

CONTENTS	i
FIGURES	ii
TABLES	iii
APPENDICES	iv
1. EXECUTIVE SUMMARY	
1.1. Emissions	
1.2. Meteorology	1
1.3. Station Data and Trends	2
1.4. Complaints	3
2. BACKGROUND	4
2.1. Air Quality Monitoring Overview	11
3. CONTINUOUS MONITORING STATION DATA AND TRENDS	
3.1. Station Data and Trends Methodology	11
3.2. Wind Roses	
3.3. Hourly Concentration Data	13
3.3.1. Total Hydrocarbons	
3.3.2. Non-methane Hydrocarbons	
3.3.3. Total Reduced Sulphur	19
3.3.4. Sulphur Dioxide	21
3.3.5. Methane	23
3.4. Monthly Data Analysis	
3.4.1. Total Hydrocarbons	
3.4.2. 3.4.2 Non-methane Hydrocarbons	
3.4.3. Total Reduced Sulphur	
3.4.4. Sulphur Dioxide	
3.4.5. METHANE	
3.4.6. Summary	
3.5. Annual Data Analysis	
3.6. Concentration Roses for Continuous Monitoring Data	
3.6.1. Total Hydrocarbons	
3.6.2. 3.6.2 Non-methane Hydrocarbons	
3.6.3. Total Reduced Sulphur	
3.6.4. Sulphur Dioxide	
3.6.5. Methane	
3.6.6. Summary	
4. TRIGGERED VOLATILE ORGANIC COMPOUND SAMPLING	
4.1. Volatile Organic Compound Results Compared to AAAQO	46
5. BACKGROUND CONCENTRATIONS OF METHANE	
6. COMPARISONS OF RESULTS ACROSS ALBERTA	
6.1. Methane	50

6.2. 6.3.	Non-methane Hydrocarbons Total Hydrocarbons	
6.4.	Total Reduced Sulphur	
7. CO	MPLAINTS AND MONITORING RESULTS	
7.1.	Station 842	64
7.2.	Station 986	65
7.3.	Reno Station	66
8. CO	NCLUSIONS	67
9. REI	ERENCES	68

FIGURES

Figure 1: Facilities in the Peace River and Surrounding Area	. 6
Figure 2: Baytex Energy Ltd. Facilities in the Peace River and Surrounding Area	. 7
Figure 3: Murphy Oil Company Ltd. Facilities in the Peace River and Surrounding Area	. 8
Figure 4: Penn West Petroleum Ltd. Facilities in the Peace River and Surrounding Area	. 9
Figure 5: Shell Canada Ltd. Facilities in the Peace River and Surrounding Area	10
Figure 6: Wind Roses at Stations 842, 986 and Reno 1	13
Figure 7: Hourly Monitored Total Hydrocarbons Data 1	15
Figure 8: Hourly Monitored Total Hydrocarbon Data from 2010-2016 1	16
Figure 9: Hourly Monitored Non-methane Hydrocarbons Data	
Figure 10: Hourly Monitored Non-Methane Hydrocarbons from 2010-20161	19
Figure 11 Hourly Monitored Total Reduced Sulphur Data 2	21
Figure 12: Hourly Monitored Sulphur Dioxide Data 2	
Figure 13: Hourly Monitored Methane Data 2	
Figure 14: Total Hydrocarbons Data and Trends at Station 842 2	26
Figure 15: Total Hydrocarbons Data and Trends at Station 896 2	26
Figure 16: Total Hydrocarbons Data and Trends at Reno Station	
Figure 17: Non-methane Hydrocarbon Data and Trends at Station 842 2	
Figure 18: Non-methane Hydrocarbon Data and Trends at Station 986 2	
Figure 19: Non-methane Hydrocarbon Data and Trends at Reno Station 2	28
Figure 20: Total Reduced Sulphur Data and Trends at Station 842 2	
Figure 21: Total Reduced Sulphur Data and Trends at Station 986 2	
Figure 22: Total Reduced Sulphur Data and Trends at Reno Station	
Figure 23: Sulphur Dioxide Data and Trends at Station 842	
Figure 24: Sulphur Dioxide Data and Trends at Station 986	31
Figure 25: Sulphur Dioxide Data and Trends at Reno Station	31
Figure 26: Methane Data and Trends at Station 842	
Figure 27: Methane Data and Trends at Station 986	
Figure 28: Methane Data and Trends at the Reno Station	33
Figure 29: Total Hydrocarbons Concentration Roses for 2015 at Station 842(left), Station 986	
(right), and Reno Station (bottom)	36

Figure 30: Total Hydrocarbons Concentration Roses for 2015 at Station 842(left), Station 986
(right), and Reno Station (bottom)
Figure 31: Non-methane Hydrocarbons Concentration Roses for 2015 at Station 842 (left),
Station 986 (right), and Reno Station (bottom)
Figure 32: Non-methane Hydrocarbons Concentration Roses for 2016 at Station 842 (left),
Station 986 (right), and Reno Station (bottom)
Figure 33: Total Reduced Sulphur Concentration Roses for 2015 at Station 842 (left), Station
986(right), and Reno Station (bottom) 40
Figure 34: Total Reduced Sulphur Concentration Roses for 2016 at Station 842 (left), Station
986(right), and Reno Station (bottom) 41
Figure 35: Sulphur Dioxide Concentration Roses for 2015 at Station 842 (left), Station 986
(right), and Reno Station (bottom) 42
Figure 36: Sulphur Dioxide Concentration Roses for 2016 at Station 842 (left), Station 986
(right), and Reno Station (bottom) 43
Figure 37: Methane Concentration Roses for 2015 at Station 842 (left), Station 986 (right), and
Reno Station (bottom) 44
Figure 38: Methane Concentration Roses for 2016 at Station 842 (left), Station 986 (right), and
Reno Station (bottom) 45
Figure 39: CH4 1-hour Average Measurements in Alberta in 2015 and 2016 51
Figure 40: NMHC 1-hour Average Measurements in Alberta in 2015 and 2016 54
Figure 41: THC 1-hour Average Measurements in Alberta in 2015 and 2016 58
Figure 42: THC and Complaints Correlation at Station 842 64
Figure 43: THC and Complaints Correlation for Station 986
Figure 44: THC and Complaints Correlation for Reno Station

TABLES

Table 1: Minimum and Maximum of 99th Percentile in Each Month of THC Concentrations	
(2015 and 2016)	. 25
Table 2: 2015 Monitoring Data Percentiles	. 34
Table 3: 2016 Monitoring Data Percentiles	. 35
Table 4: Volatile Organic Compound Canister Sample 1-hour Average Concentrations (ppbv)	. 47
Table 5: CH4 1-hour Average Measurements in Alberta for 2015 and 2016 (ppmv)	. 52
Table 6: NMHC 1-hour Average Measurements in Alberta for 2015 and 2016 (ppmv)	. 55
Table 7: THC 1-hour Average Measurements in Alberta in 2015 and 2016 (ppmv)	. 59
Table 8: TRS 1-hour Average Measurements in Alberta in 2015 and 2016 (ppbv)	. 62

APPENDICES

APPENDIX A: MONITORING STATION AUDITS APPENDIX B: TRIGGERED SAMPLE RESULTS APPENDIX C: COMPLAINTS AND MONITORING RESULTS CORRELATION

1. EXECUTIVE SUMMARY

The Peace River Area Monitoring Program (PRAMP) was created to satisfy air quality monitoring and modelling recommendations released following a proceeding called by the Alberta Energy Regulator (AER).

The proceeding was called to address odour and emissions generated by heavy oil operations in the Peace River Area of Alberta (AER 2014a). The oral proceeding started on January 21 and ended on January 31, 2014, in Peace River, Alberta.

On March 31, 2014, the panel released its report titled Report of Recommendations on Odours and Emissions in the Peace River Area. The recommendations in the report included calls for regulatory change, regional air monitoring, and ongoing stakeholder engagement in the Peace River Area. This report outlines the results of air monitoring in the area as a result of these recommendations.

In particular, the monitoring requirements in Paragraph 178(1) of the report recommendations accepted by the AER state, "The AER accepts this recommendation and will immediately engage with industry, residents and stakeholders to establish a regional air quality monitoring program for the Peace River Area" (AER 2014b). This report is the second annual data review and compares 2015 and 2016 monitoring results; the first review, which compares 2014 and 2015 data is available on the PRAMP website.

1.1. Emissions

In the region, there are about 4,000 industrial facilities and installations including gas plants, flare stacks, wells, storage facilities, and pipeline infrastructure with the potential to emit hydrocarbons (IHS 2016; Figure 1). Operators in the Three Creeks area with Cold Heavy Oil Production with Sand (CHOPS) facilities are required to have emission control devices in place to mitigate or eliminate potential releases of hydrocarbons (AER 2017). Typical hydrocarbon emissions result from fugitive and combustion sources that tend to occur on a continuous basis. Emissions also occur on an episodic basis from truck filling and tank cleaning operations. While emission sources are not characterized, the impacts on air quality at three monitoring locations are presented for review.

1.2. Meteorology

This report outlines data collected during 2015-2016 at three monitoring locations (Figure 1a). The measurements collected at the monitoring sites confirm that temporal and spatial meteorological variations occur in the Peace River Area.

- The wind directions have a systematic diurnal trend with west-southwesterly and southwesterly winds occurring during the day. During the night, more southerly and south-easterly winds occur.
- The wind speeds have a systematic trend with lower winds occurring during the night and increasing wind speeds during the day. From a spatial perspective, the following are noted:
 - $\circ~$ The predominant wind direction at the 842 and Reno stations is from the southwest for the period of monitoring and at Station 986 is from the southeast.

1.3. Station Data and Trends

PRAMP has a well-established monitoring program that is critical to understanding the state of air quality in the Peace River Area. The monitoring program has been active at the 842 and 986 stations since 2010 and at the Reno station since 2014. This is PRAMP's second annual report and data analysis was completed on the two most recent annual datasets.

Observations were made from data and trend analysis that will be discussed throughout the report. Three types of monitored data were analyzed for this report. Continuous sampling monitored Sulphur dioxide (SO₂), total reduced sulphur (TRS), total hydrocarbon (THC), methane (CH₄), non-methane hydrocarbons (NMHC) concentrations as well as meteorological parameters (wind speed, wind direction, temperature, pressure, and relative humidity) from the three continuous ambient air quality monitoring stations in the region.

Triggered samples were collected when the NMHC concentration reached a threshold of 0.3 parts per million by volume (ppmv) averaged over 5 minutes. In total, 14 and 12 triggered events were sampled using canisters and analyzed in 2015 and 2016 respectively for over 140 volatile organic compounds (VOC). In 2016, 12 canister events were triggered in 2016, but only 11 samples were collected for analyses; one event was missed by the operator and the sample was discarded. AER complaints were collected and analyzed for the correlations to monitored data.

The methods used to analyze the monitored data are outlined below.

Continuous sampling:

- continuous measured meteorology parameters (wind speed and wind direction) are presented in wind roses
- continuous measured ambient SO₂, TRS, THC, CH₄, and NMHC concentrations are present in vertical bar charts, line plots, and concentration roses
- continuous measured SO₂, TRS, THC, CH₄, and NMHC concentrations (maximum, 99th percentile, and average by month) are presented in vertical bar charts with statistical analysis

Triggered sampling canister events:

 14 and 12 triggered events were sampled using canisters and analyzed in 2015 and 2016 respectively for over 140 volatile organic compounds (VOC). In 2016, 12 canister events were triggered in 2016, but only 11 samples were collected for analyses; one event was missed by the operator and the sample was discarded. These data are presented in tables.

AER complaints:

• AER complaints are presented in a timeline with THC concentrations (continuous)

Based on hourly measurement data, maximum THC, NMHC, SO₂, and CH₄ concentrations generally show some incremental variability in trends at Stations 986 and 842 between 2015 and 2016. Observations of increased THC concentrations at Stations 986 toward the end of 2015 may be due to brush burning activities happening near the monitoring stations. TRS data at Stations 986, 842, and Reno show an incremental increasing trend over the two years of applicable data. Analysis of the monitored data on a monthly basis resulted in varied trends over time for each substance.

Stations 986 and 842 monitoring results showed that the 99th percentile concentrations of THC were among the lowest in the Province. The 99th percentile decreased at the Reno Station between 2015 and 2016 however it remains elevated relative to Station 986 and 842 for both years. The Reno station measurements are higher, however they are at about the average of other stations in the province.

Data for Three Creeks suggests that PRAMP is meeting the goal of verifying that air quality is improving and odours are being minimized as a result of operational and regulatory improvements particularly when the full record of monitoring is considered. This pattern of improvement is particularly evident when examining data from the beginning of monitoring record at Station 986 and 842; further investigation of data collected at the Reno station is required to determine potential causes for elevated concentrations relative to the two other stations in the PRAMP network.

1.4. Complaints

Complaints filed with the AER are presented in a timeline with THC and NMHC concentrations (continuous), and canister-triggered events. AER complaints were collected and analyzed as follows:

- Station 842 showed a decrease in the number of complaints from 39 in 2015 to 15 in 2016
- Station 986 showed a decrease in the number of complaints from 6 in 2015 to 4 in 2016
- Reno Station showed a decrease in the number of complaints from 11 in 2015 to 2 in 2016

The number of complaints decreased from 2015 to 2016 for the Peace River Area. Complaints were correlated to monitored concentrations with wind direction and speed taken into consideration.

2. BACKGROUND

The Peace River Area is defined as the Three Creeks, Reno, Seal Lake, and Walrus areas (Figure 1a). The air quality monitoring program operated by PRAMP is designed to operate collaboratively and transparently including representation from industry, the AER, government agencies, residents of Three Creeks and Reno areas, and environmental non-governmental organizations (AER 2014b).

PRAMP's vision is that the "Peace River Area heavy oil and bitumen operations' emissions will not cause odours that affect human health" (PRAMP 2015). The mission statement maintained by PRAMP is the "Peace River Area will have an air quality monitoring program that provides credible and comprehensive data to permit the identification and appropriate response to odour and emission-related issues" (PRAMP 2015). An overview of PRAMP's goals and objectives are listed below. PRAMP defines odours and emissions as the following:

- odours: detected in the ambient air by the people in the area
- emissions: at a source are defined by the concentration and flow rate of each compound released; upon release from the source the emissions disperse downwind and may be measured as a concentration in the ambient air by a monitoring device

PRAMP's goals are to:

- assist in verifying that air quality is improving and odours are being minimized as a result of operational and regulatory improvements
- operate transparently and give residents and stakeholders timely access to data and information in a manner that is readily understood
- demonstrate that oil and gas operators have effective control mechanisms
- verify that air quality is at acceptable levels and that emissions residents are exposed to are below toxic thresholds (PRAMP 2015)
- maintain its status as an independent Not-for-Profit Organization and Airshed that is focused on continuous improvement and responsible growth

To accomplish the goals the program would:

- characterize emissions and odours associated with industrial activity, with a focus on oil and gas operations
- identify and measure dominant sources of emissions in the area
- give timely, real-time data on ambient emission and odours in the area (PRAMP 2017)

A review and analysis of the 2015 - 2016 annual air monitoring data collected by PRAMP is included in this report. The data includes the continuous monitoring of the 1-hour averaged TRS, CH₄, NMHC, THC, and SO₂ concentrations. Additionally, VOCs monitored using 1-hour event canisters triggered by NMHC concentrations exceeding a threshold of 0.3 ppmv were also assessed.

All monitoring was conducted at the three community stations located within PRAMP's monitorin network:

- Station 842 is located at 16-07-084-19 W5M
- Station 986 is located at 14-16-085-19 W5M
- Reno Station is located at 01-28-079-20 W5M

The locations of the three monitoring stations are shown on Figure 1, which also shows nearby industrial activities in the Peace River Area and surrounding regions including compressor stations, oil batteries, tank farms, gas gathering and processing facilities, terminals, pulp mills, and waste facilities (industrial and domestic). This figure assists in the identification of the emission sources around each station as well as the potential contribution of nearby sources to the monitoring data. The heavy oil facilities in the area, operated by Baytex Energy Ltd., Murphy Oil Company Ltd., Penn West Petroleum Ltd., and Shell Canada Ltd. are selectively shown on Figures 2 through 5.

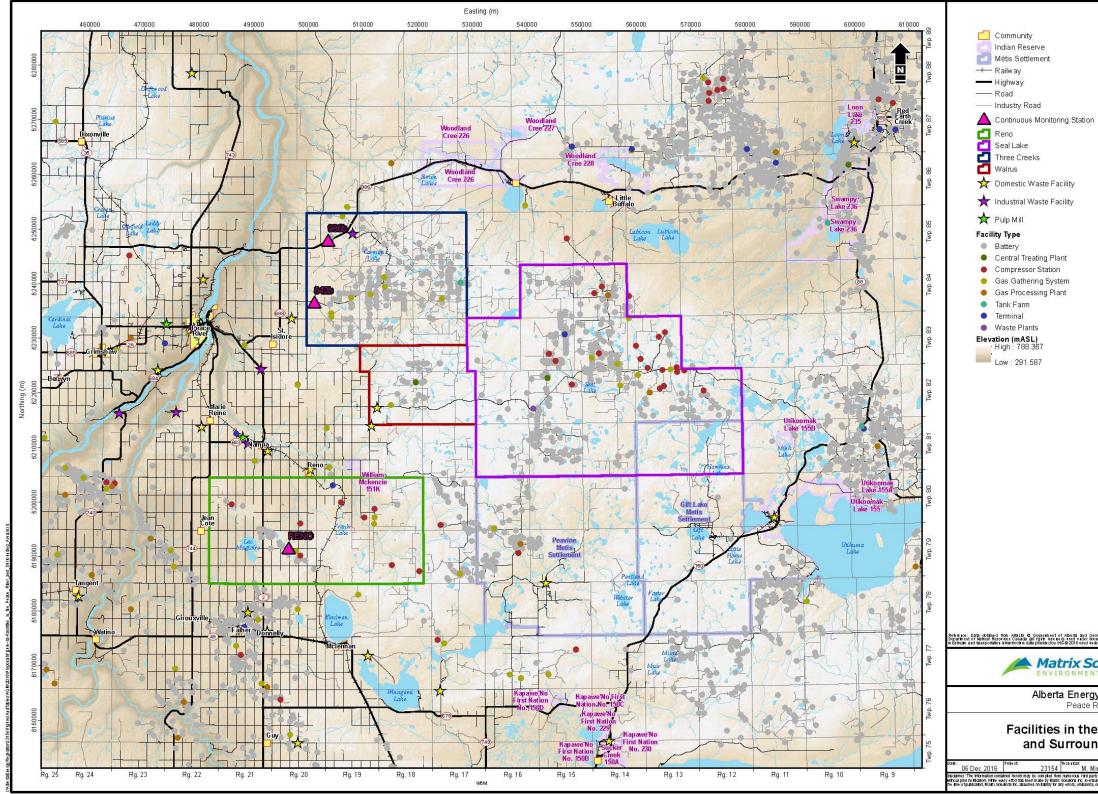


Figure 1: Facilities in the Peace River and Surrounding Area

1:550,000 m manad GeoGrafte 0 5,250 0 5,250 10,500 16 tred uner litere: 001 NAD 1983 UTM Zone 11N
X Solutions Inc.
inergy Regulator eace River
the Peace River rounding Area
kai: M. Mirzajani Restever: K. Onder: R. Keller na húzari maktati halare sabol o petkol o danse fis húzarake ha souzaro fre trikmalonge ender Soušankor, o trosouženis her tel ng maktat. 100
s, ombskins, or haccuracies in the third party maleria.

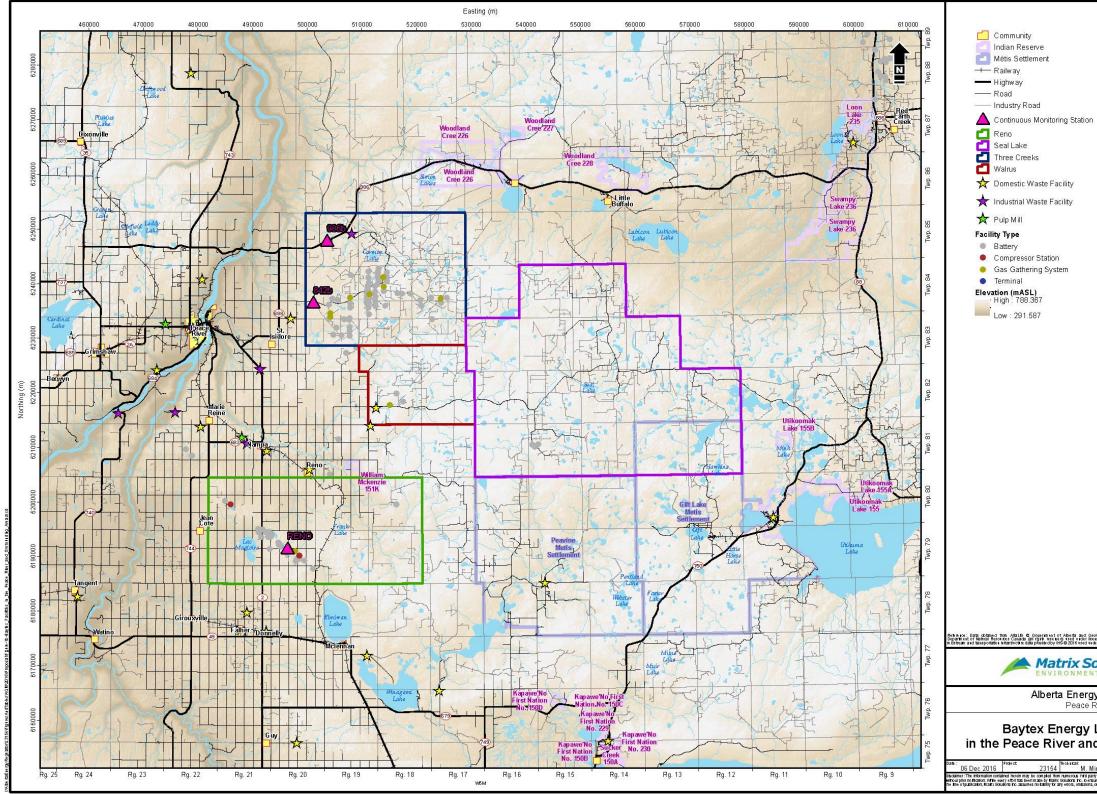


Figure 2: Baytex Energy Ltd. Facilities in the Peace River and Surrounding Area

1.550,000 no and 0ecocante e 5,250 0 5,250	m 10,500	
ed rider lice ise. ODI 116 rsed rider lice ise. NAD 1983 UTM Zone 1		
X Solutions Inc.		
nergy Regulator eace River		
rgy Ltd. Facilities r and Surrounding Area		
kali M. Minaniani Reulewer: Condex Draws:	R. Keller	
	1b	

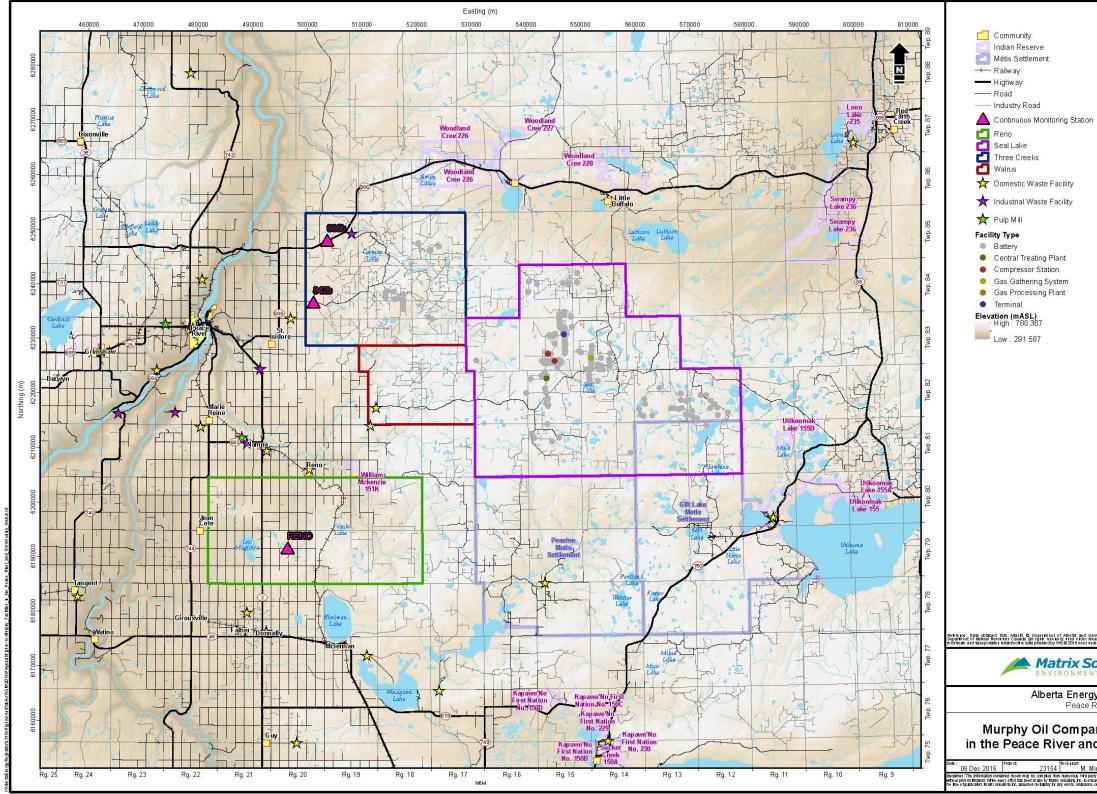


Figure 3: Murphy Oil Company Ltd. Facilities in the Peace River and Surrounding Area

1:550,000	m
ta and Geographic 5,250 0 d'inder license, GDM 16 ised inder license, NAD 1983 UTP	5,250 10,500 M Zone 11N
X Solutions Inc.	
nergy Regulator eace River	
npany Ltd. Facilit and Surrounding	g Area
M. Mirzajani K. Onder	Drawn: R. Keller Figure
s, omissions, or haccuracies in he hird parly malenta.	1c

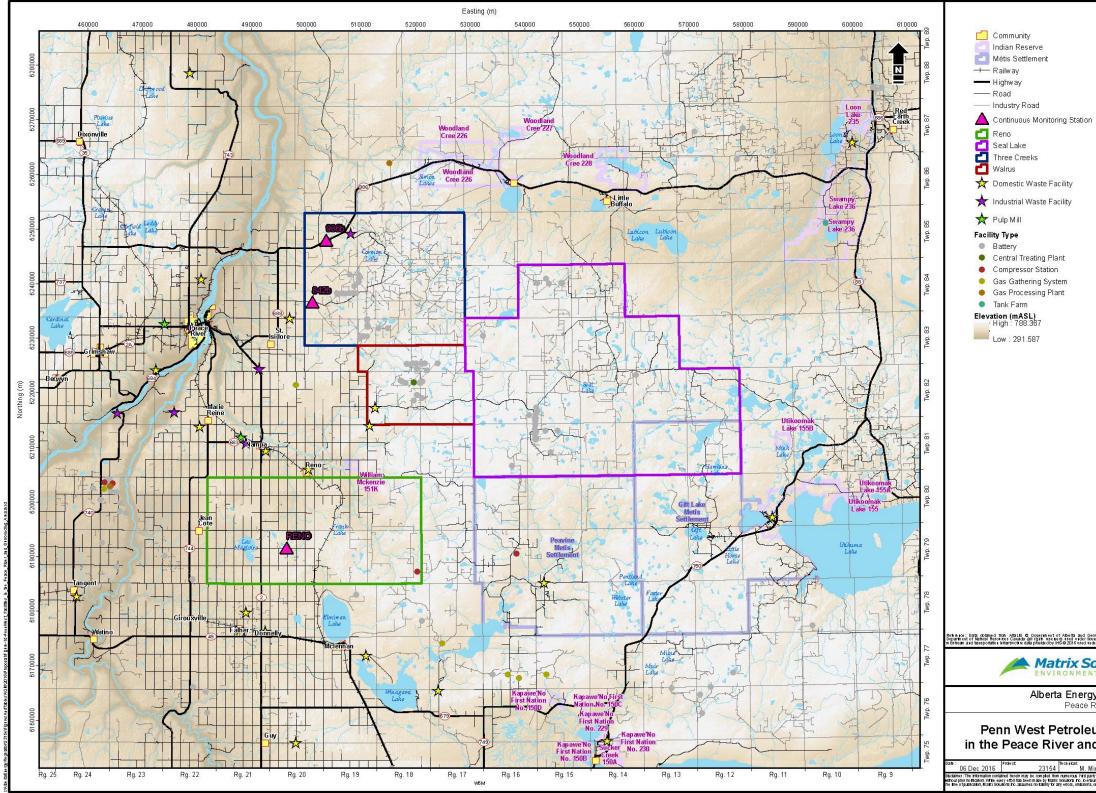


Figure 4: Penn West Petroleum Ltd. Facilities in the Peace River and Surrounding Area

1:550,000 m
ta aud GeoGrafie o 5,250 0 5,250 10,500 d uder likeste. COM 16 tred tuder likeste. NAD 1983 U TM Zone 11N
X Solutions Inc.
nergy Regulator eace River
oleum Ltd. Facilities r and Surrounding Area
xai: Mirzajami Katiwer: K. Onder R. Keller w. http://www.setate.com/operander s. bolerate headatase het hotmanoperander Figure
a no presular presourates in the Hird party malerial 1

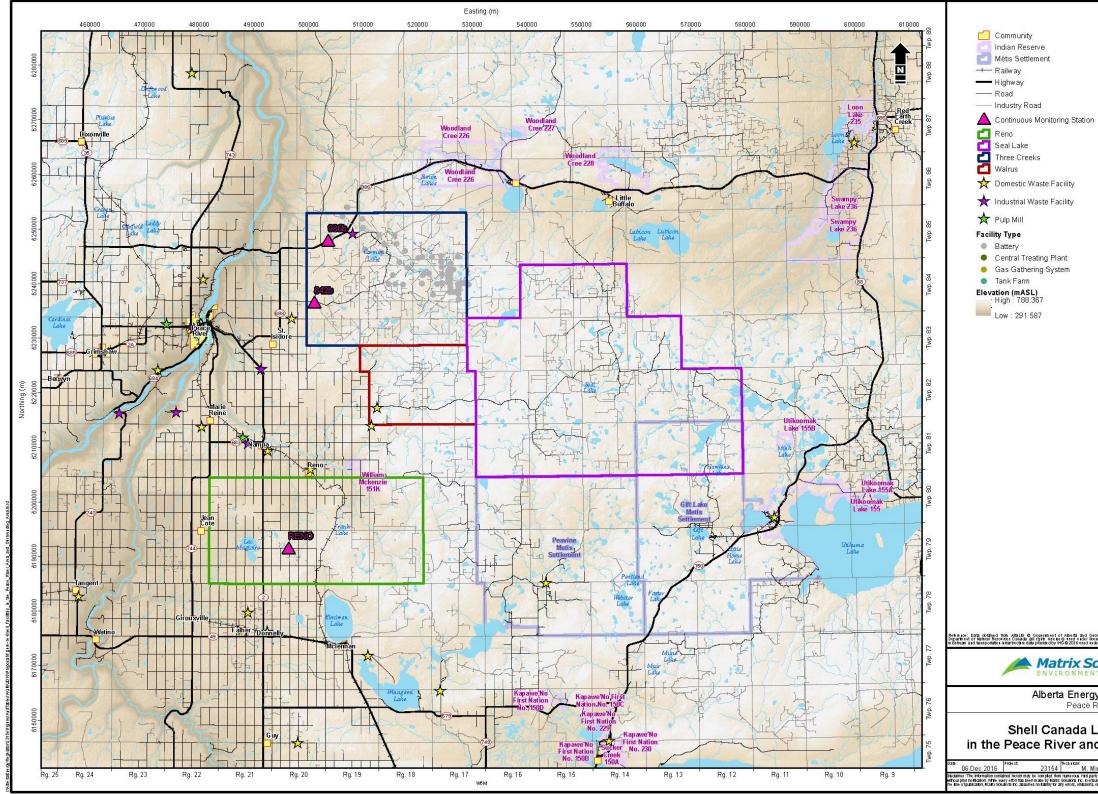


Figure 5: Shell Canada Ltd. Facilities in the Peace River and Surrounding Area

1.550,000 m m and Geocome 5 d Hoer Bases 5,250 0 5,250 10,500 d Hoer Bases 5,250 NAD 1983 UTM Zone 11N		
X Solutions Inc. MMENT & ENGINEERING		
nergy Regulator eace River		
da Ltd. Facilities		
r and Surrounding Area		
M. Mirzajani K. Onder R. Keller van hid party makfals traffare abject to perfoldo drange is no bersau er avouragor for terformation prevente al s, omissions, or traccurazione tre tind party maketal. 10		

2.1. Air Quality Monitoring Overview

To accomplish PRAMP's goals and to be in alignment with its mission statement, air quality in the Peace River Area was monitored through continuous and triggered canister samples.

Continuous monitoring stations use substance-specific technology to detect concentrations in a sample stream of ambient air that is taken by the instrument at a set time interval. Wind speed and direction are also collected at the continuous monitoring stations and used in this monitoring program. Assessing concentration and wind data together allows investigation into the potential sources of substances affecting the local air quality. Statistical analysis, such as the calculation of percentiles, is performed on the data, which has undergone quality assurance by the laboratory in charge, to understand the distribution of the data.

Individual sampling events were triggered when continuous monitored data exceeded set thresholds. Triggered sampling events were completed using canisters to capture ambient air samples. The samples are then taken to a laboratory for analysis.

PRAMPs objectives include the comparison of monitored data to toxic thresholds (PRAMP 2015). The provincial government developed the Alberta Ambient Air Quality Objectives and Guidelines Summary (AAAQO; AEP 2016) to protect the environment and human health. The AAAQOs are used as threshold values for comparing substance concentrations (at appropriate averaging periods) to assess impacts.

3. CONTINUOUS MONITORING STATION DATA AND TRENDS

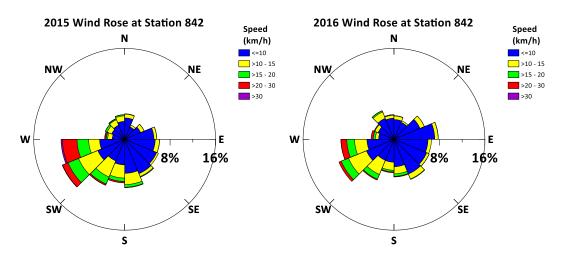
The following subsections describe the results of the monitoring, analysis, and methods used to complete this report.

3.1. Station Data and Trends Methodology

All hourly data collected at the three stations was compiled and interpreted. Hourly data for meteorology, THC, NMHC, TRS, SO₂, and CH₄ concentrations have been presented as follows:

- wind roses displaying the wind speed and direction for each year and at each station
- hourly data with maximum values identified for each year and station
- monthly measurement trends for the 100th (maximum) and 99th percentiles by month for each station for all time periods
- time series results for the maximum, 99th, 90th, and 50th percentiles and minimum readings collected at each station and year

This data and statistical analysis has been presented with interpretation in Sections 3.2 to 3.5. An annual audit was completed by Alberta Environment and Parks of the three monitoring stations and the audits are available in Appendix A.



3.2. Wind Roses

Presented in a circular format, wind roses show the frequency of winds blowing from particular directions over a specified period. The length of each "spoke" around the circle is related to the frequency that the wind blows from a particular direction per unit time. Each concentric circle represents a different frequency, emanating from zero at the center to increasing frequency at the outer circles. Each spoke is broken down into colour-coded bands to show the range of wind speeds that occurred in that particular direction.

Wind roses created from meteorological measurement data for each station and year are presented to understand the predominant wind conditions at each of the three station locations (Figure 2). Trends for each station are noted as follows:

- Station 842: Winds are primarily from the southwest. Wind speeds largely range from less than 10 to 30 km/hour with minimal wind speeds over 30 km/hour in both 2015 and 2016. More than 73% of hours annually were below 10 km/hour.
- Station 986: Wind direction varies, with a higher frequency of winds coming from the southeast and minimal winds coming from the northeast. Wind speeds largely range from less than 10 to 15 km/hour with minimal wind speeds over 15 km/hour in both 2015 and 2016. Approximately 91% of hours were below 10 km/hour.
- Reno Station: Winds were primarily from the southwest. Wind speeds largely range from less than 10 to 20 km/hour with minimal wind speeds over 20 km/hour. Approximately 89% of hours annually were below 10 km/hour.

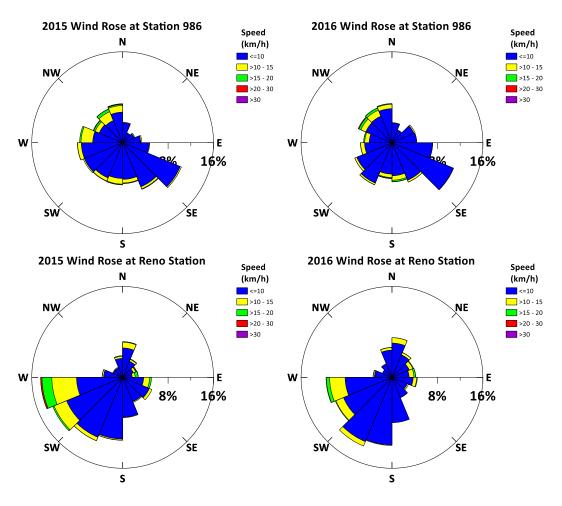
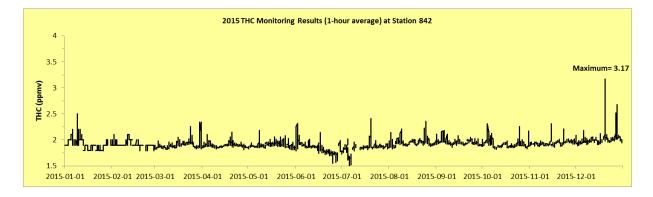
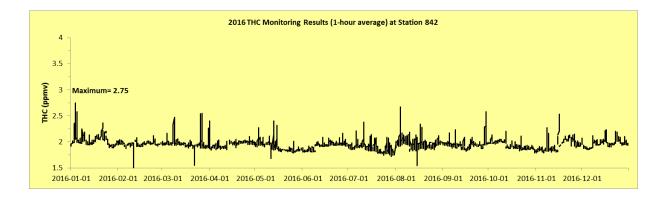


Figure 6: Wind Roses at Stations 842, 986 and Reno

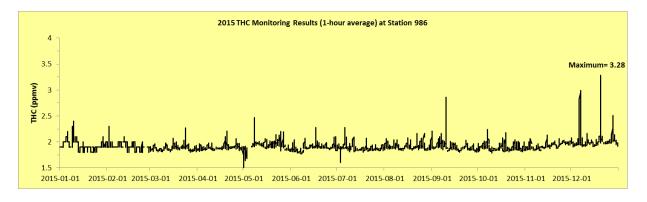
3.3. Hourly Concentration Data

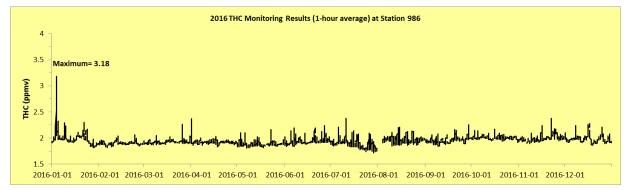
Hourly concentration data is presented to show all concentration data collected at the three stations for each year. Hourly concentrations are presented for total hydrocarbon (THC), non-methane hydrocarbons (NMHC), total reduced sulphur (TRS), sulphur dioxide (SO₂) and methane (CH₄) in this section. THCs are the sum of CH₄ and NMHC. NMHC may be emitted with methane from the man-made sources and are likely to have an odour. NMHC measurements include volatile organic compounds (VOC).

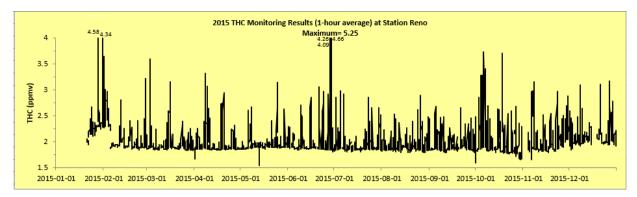

TRS compounds include hydrogen sulphide, carbonyl sulphide, carbon disulphide, and other hydrocarbon-sulphur compounds such as mercaptans and thiophenes. Some TRS compounds may have a strong offensive odour at concentrations below 1 ppbv. There are natural sources of TRS but they can also be emitted from bitumen facilities. SO₂ results from the combustion of sulphur compounds in fuel and flared/incinerated gas. CH₄ comes from natural and man-made sources and has a background concentration of typically less than 2 ppmv, depending on season and time of day. CH₄ does not have an odour or health effects at these low concentrations.

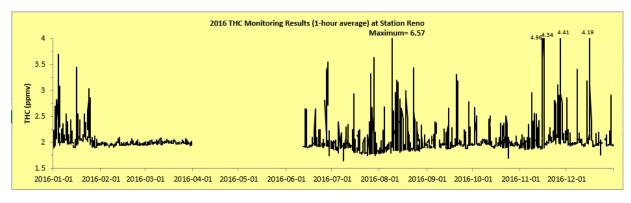


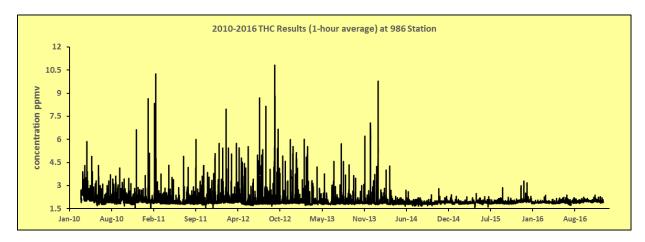
3.3.1. Total Hydrocarbons

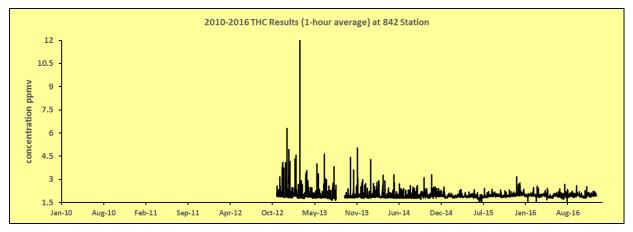

THC concentrations include all NMHC and methane concentrations. There is no AAAQO for THC. Hourly data for THC from the three stations is presented in the charts below (Figure 3).


The maximum hourly THC data for both Station 842 and Reno Station are incrementally higher in 2016 than they were in 2015; the maximum hourly THC concentration at Station 986 was lower in 2016 than in 2015. The elevated THC concentrations, observed from October to November 2015, may be due to brush burning activities occurring south of the Reno Station monitoring trailer. There may also be sources south and southwest of the station (outside of the PRAMP area) influencing elevated measurements at this site given the proximity of the station to the boundary of study area and the density of oil and gas activity just beyond the boundary. A significant producer in the Reno area shut down operations in early 2016 and resumed production by that summer. It is not known if the break in operations included other producers in the area.



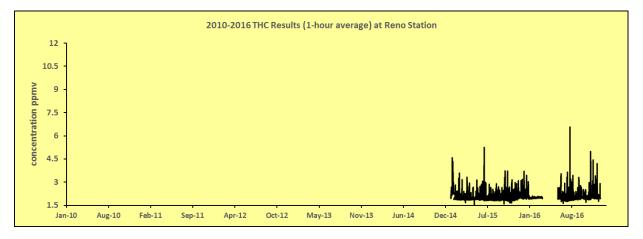


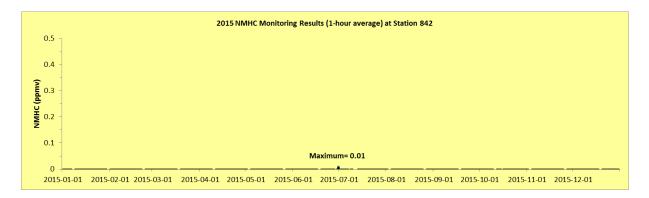


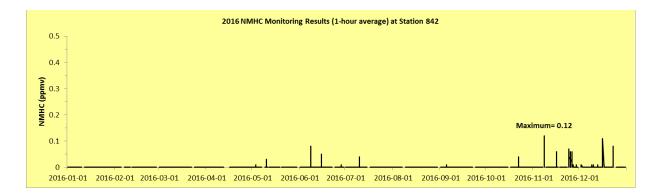

Figure 7: Hourly Monitored Total Hydrocarbons Data

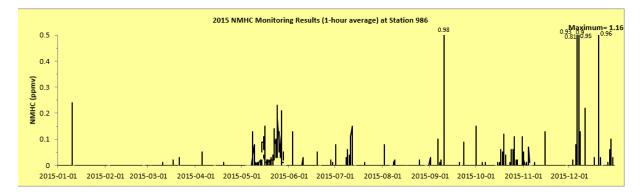
For historical comparison purposes, Figure 8 shows the complete record of monitoring for THC at all stations. There is a clear decrease in ambient THC concentrations at Stations 986 and 842.

Note that the scale of these charts is different than the previous series because the historical concentrations of THC have been higher than measured in 2015-2016. Reno continues to show elevated THC relative to the other stations however the concentrations are not as high as historical values measured at the other PRAMP sites.



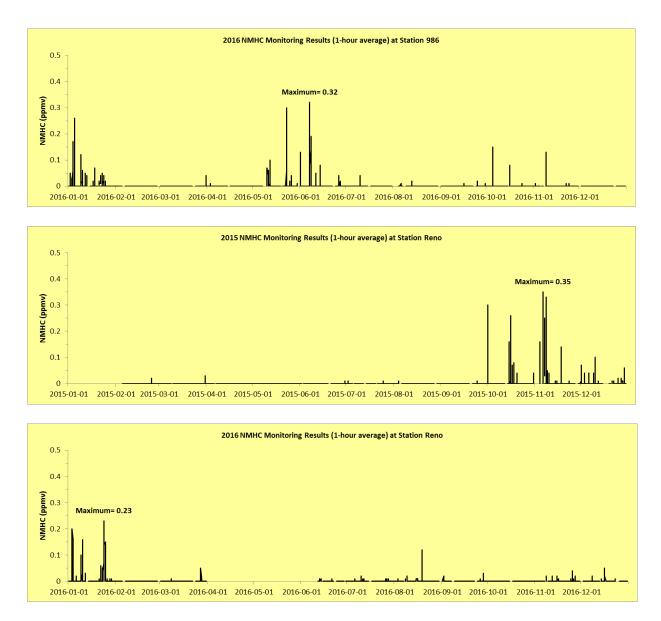
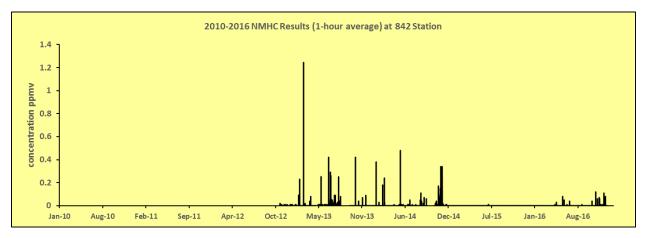

Figure 8: Hourly Monitored Total Hydrocarbon Data from 2010-2016

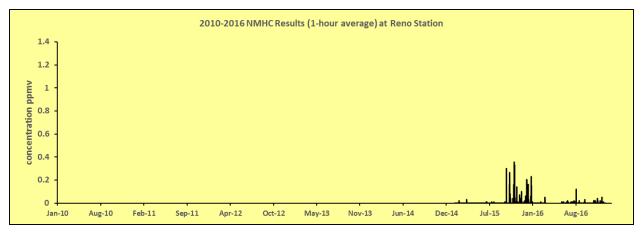



3.3.2. Non-methane Hydrocarbons

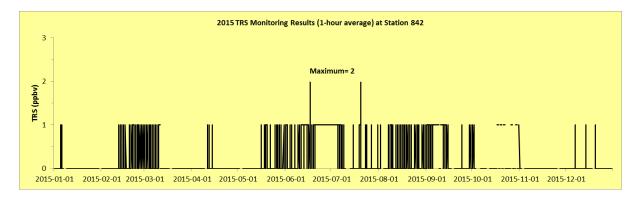
Hourly NMHC data NMHC for the three stations is shown in the charts below (Figure 4). There is no AAAQO for NMHC.

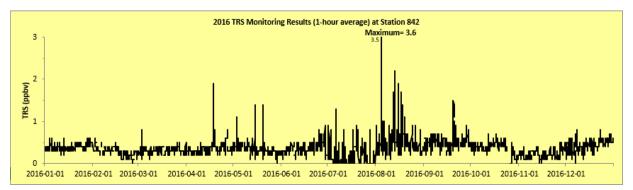
The maximum hourly NMHC data for Station 842 increased incrementally from 2015 to 2016. In 2015 all the data reported at Station 842 were zero except for four occurrences of 0.01 ppmv. The maximum hourly NMHC concentration for Station 986 decreased between 2015 to 2016 from 1.16 ppmv to 0.32 ppmv and overall shows a lower frequency of occurrences of elevated measurements of NMHC. The Reno Station recorded maximum NMHC concentrations of up to 0.35 ppmv in 2015 and 0.23 ppbv in 2016; overall, the magnitude and frequency of elevated NHMC events decreased in 2016 compared to 2015.

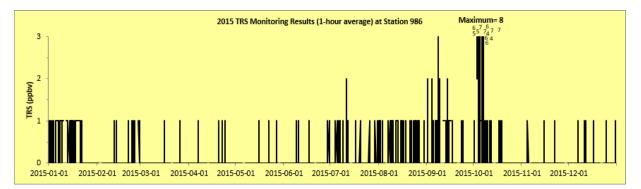




Figure 9: Hourly Monitored Non-methane Hydrocarbons Data

For historical comparison purposes, Figure 10 shows the complete record of monitoring for NMHC at all stations. There is a decrease in frequency of elevated NMHC events at Stations 986 and 842. Reno shows a decrease in the magnitude and frequency of elevated NMHC since monitoring began at that site in 2014.




3.3.3. Total Reduced Sulphur



Hourly data for TRS for the three stations is shown in the charts below (Figure 5). The resolution of the reported results was 1 parts per billion (ppbv). There is no AAAQO for TRS but the AAAQO for hydrogen sulphide and carbon disulphide are both 10 ppbv.

There is a slight increase in the maximum hourly TRS concentration from 2015 to 2016 at both Station 842 and 986. The Reno Station shows the highest hourly value overall and the highest frequency of elevated measurements of TRS. Elevated measurements of TRS may be caused by local industrial sources but other may also include agriculture and natural sources such as shallow lakes and sloughs.

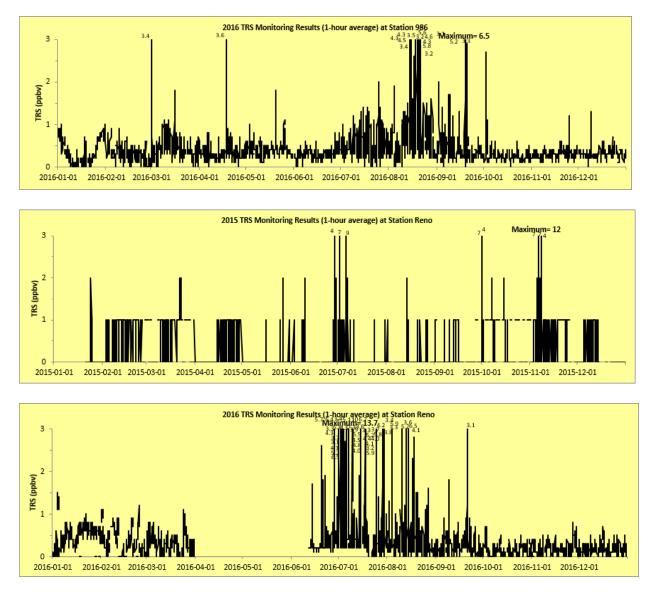
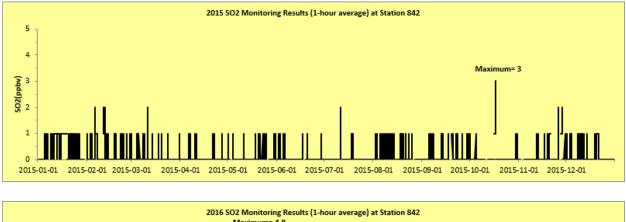
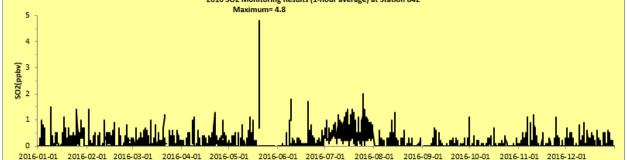
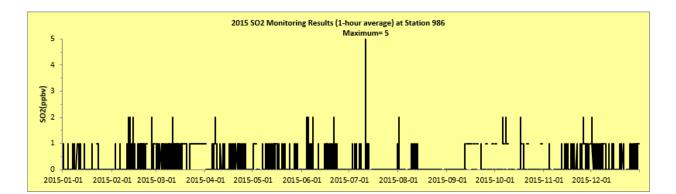
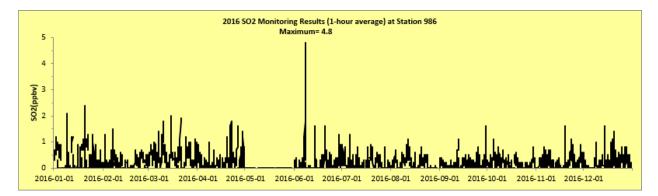


Figure 11 Hourly Monitored Total Reduced Sulphur Data


3.3.4. Sulphur Dioxide


Hourly data for SO_2 for the three stations is shown in the charts below (Figure 6). The AAAQO for SO_2 is 172 ppbv.


The maximum hourly SO_2 data for Station 842 increased from 2015 to 2016. The maximum hourly SO_2 data for Station 986 decreased from 2015 to 2016. At this station, the maximum 1-hour average SO_2 is similar to Station 842. Overall, it is difficult to comment on the relative change in the year-over-year frequency of elevated measurements at the Reno Station and Stations 986 and 842 because the measurement technology changed in 2016 to one that has a higher



resolution. It should be noted that the elevated SO₂ concentrations at all stations and years are far below the Alberta Ambient Air Quality Objective (AAAQO) (AEP 2017).

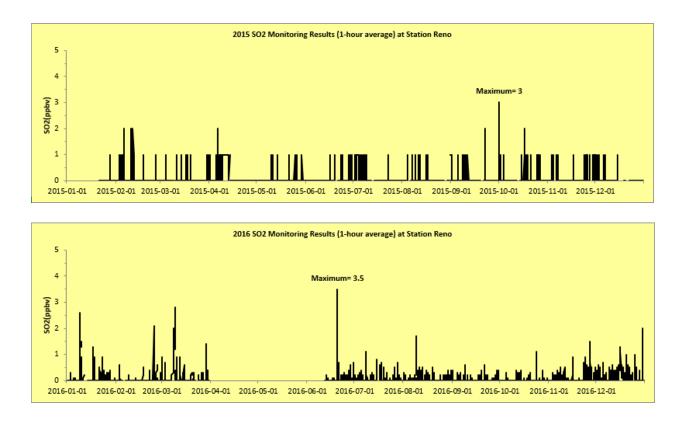
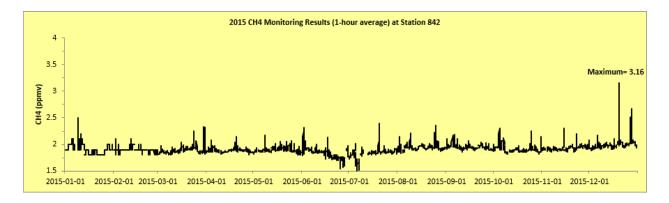
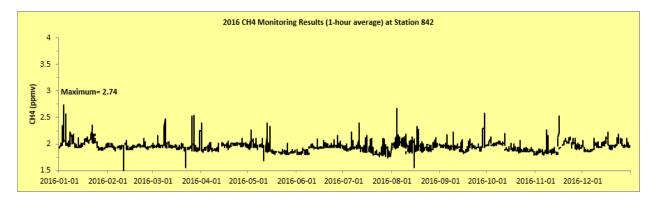
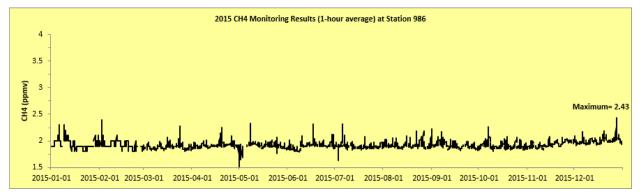
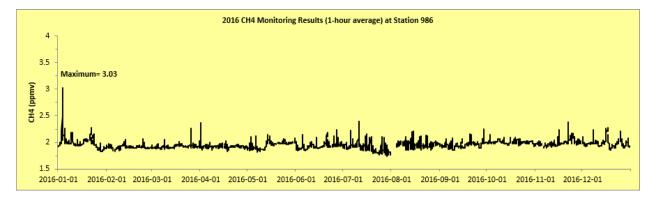
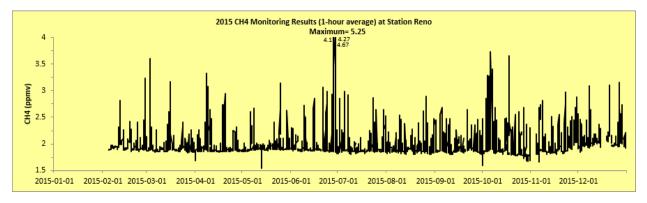



Figure 12: Hourly Monitored Sulphur Dioxide Data


3.3.5. Methane


Hourly data for CH₄ for the three stations is shown in the charts below (Figure 11). There is no AAAQO for CH₄.


The maximum hourly CH_4 data for Station 842 decreased from 2015 to 2016. The maximum hourly CH_4 data for Station 986 increased slightly from 2015 to 2016. Reno station shows the highest frequency of occurrence of elevated measurements of CH_4 for both 2015 and 2016.



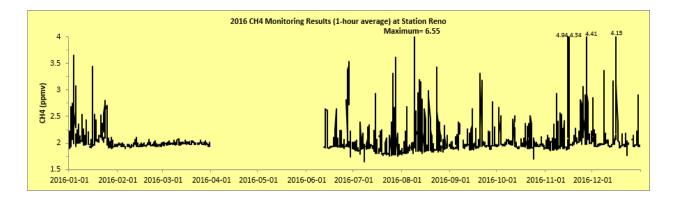


Figure 13: Hourly Monitored Methane Data

3.4. Monthly Data Analysis

The hourly data presented in Section 3.3 was analyzed to determine the maximum, 99th percentile, and average of hourly concentrations for each month of data. Calculating percentiles allows data to be grouped based on the percentage of values that fall below a specific value. Arranging the data into percentile ranks can provide insight to the distribution of data and is helpful for understanding outlying values. For example, the 99th percentile value represents the value at which 99% of the data falls below.

Analyses are often carried out using a higher percentile instead of the true maximum as it is a more representative value of the full dataset and is less likely to be impacted by extreme data points. Trend lines of the non-zero series are presented to examine if the series have an increasing or decreasing behaviour from January 2015 to December 2016 for all stations. Variation between the seasons is expected due to the impacts of climate on ambient concentration.

3.4.1. Total Hydrocarbons

The THC trends for the maximum, 99th percentile, and average by month for each site are shown on the following figures. Table 1 presents the minimum and maximum monthly 99th percentile THC for each year.

	2015		2016	
Station	Minimum (ppmv)	Maximum (ppmv)	Minimum (ppmv)	Maximum (ppmv)
842	2.05	2.52	2.06	2.45
986	2.06	2.51	2.02	2.56
Reno	2.40	3.49	2.05	3.34

Table 1: Minimum and Maximum of 99th Percentile in Each Month of THC Concentrations (2015 and 2016)

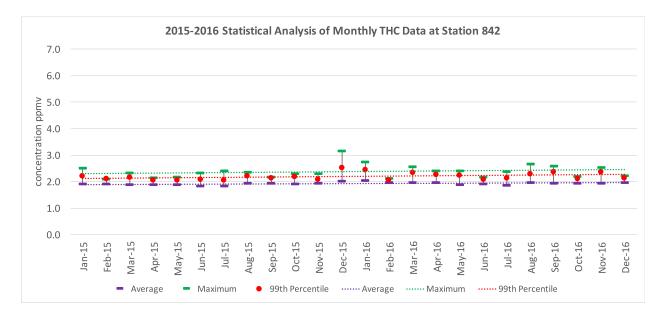


Figure 14: Total Hydrocarbons Data and Trends at Station 842

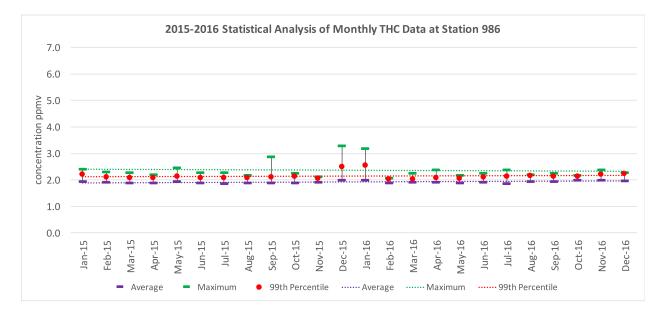


Figure 15: Total Hydrocarbons Data and Trends at Station 896

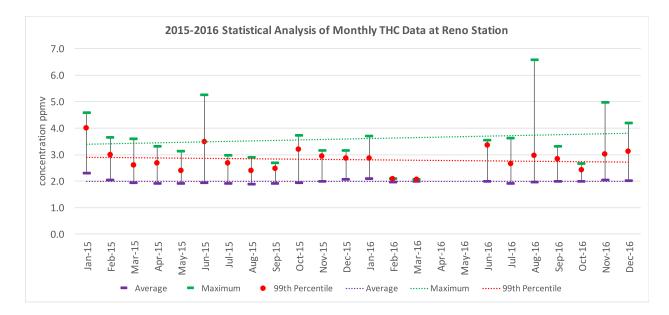


Figure 16: Total Hydrocarbons Data and Trends at Reno Station

3.4.2. 3.4.2 Non-methane Hydrocarbons

The NMHC trends for the maximum, 99th percentile, and average by month for each site are shown on the following figures.

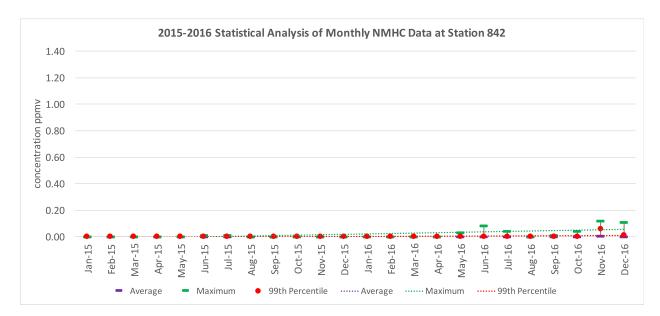


Figure 17: Non-methane Hydrocarbon Data and Trends at Station 842

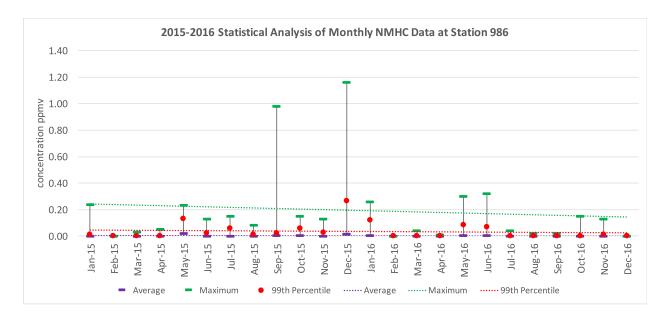


Figure 18: Non-methane Hydrocarbon Data and Trends at Station 986

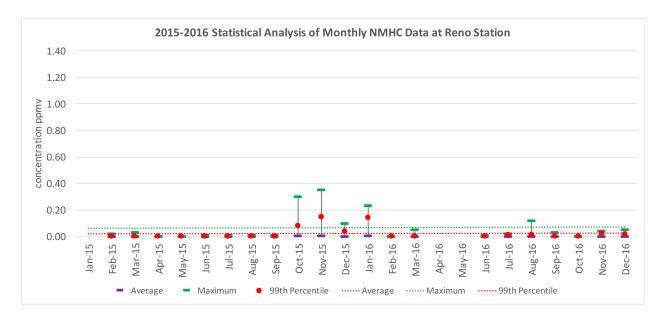


Figure 19: Non-methane Hydrocarbon Data and Trends at Reno Station

3.4.3. Total Reduced Sulphur

The TRS trends for the maximum, 99th percentile, and average by month for each site are shown on the following figures.

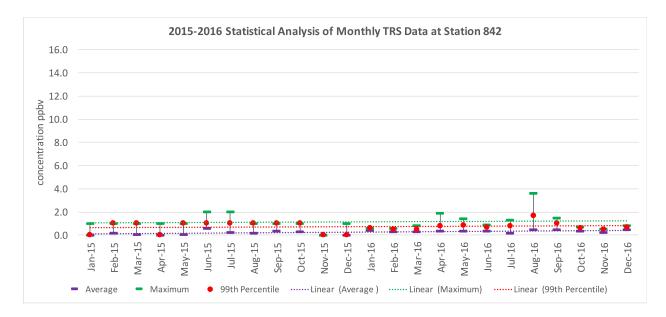


Figure 20: Total Reduced Sulphur Data and Trends at Station 842

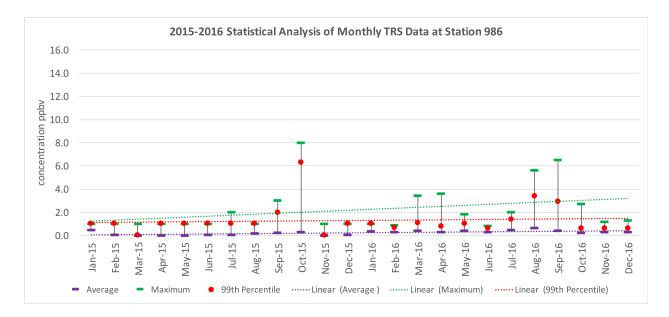


Figure 21: Total Reduced Sulphur Data and Trends at Station 986

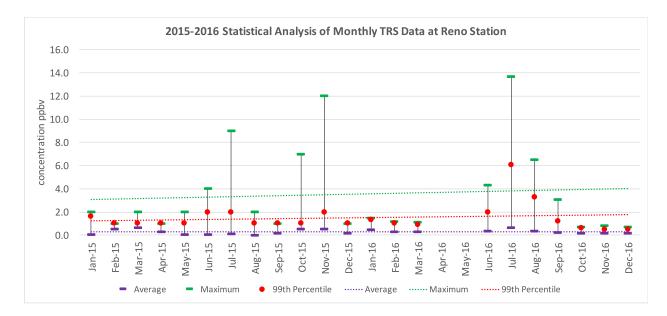


Figure 22: Total Reduced Sulphur Data and Trends at Reno Station

3.4.4. Sulphur Dioxide

The SO₂ trends for the maximum, 99th percentile, and average by month for each site are shown on the following figures.

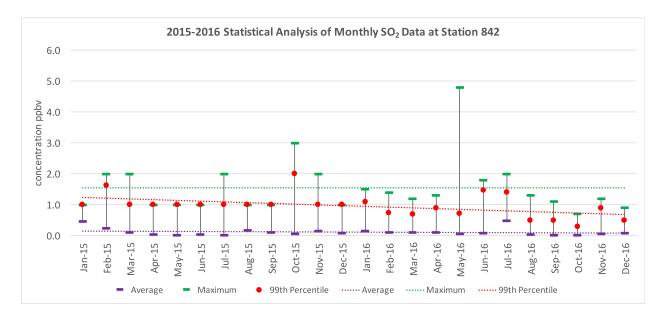


Figure 23: Sulphur Dioxide Data and Trends at Station 842

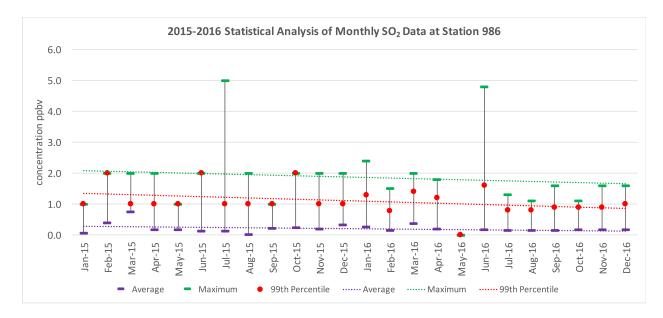


Figure 24: Sulphur Dioxide Data and Trends at Station 986

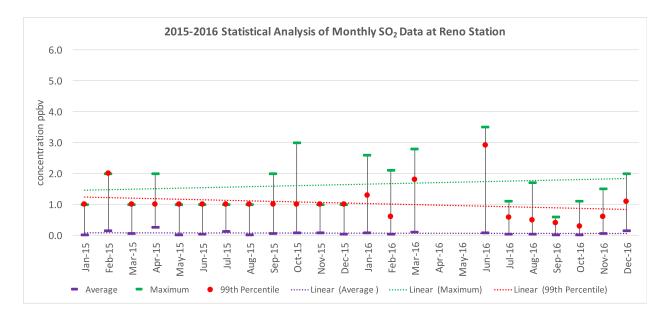


Figure 25: Sulphur Dioxide Data and Trends at Reno Station

3.4.5. METHANE

The CH4 trends for the maximum, 99th percentile, and average by month for each site are shown on the following figures.

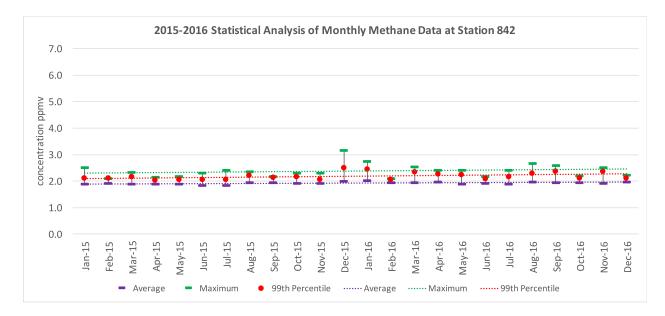
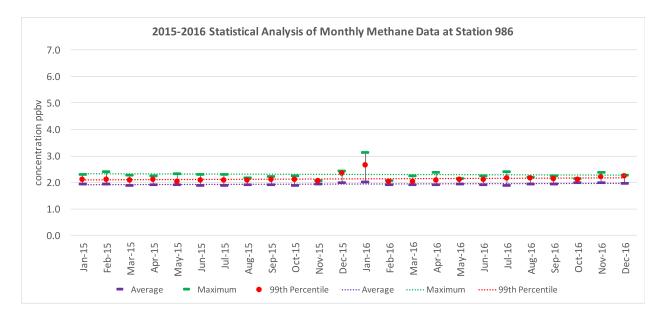



Figure 26: Methane Data and Trends at Station 842

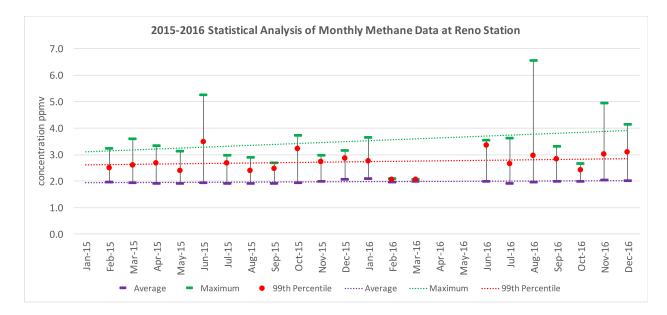


Figure 28: Methane Data and Trends at the Reno Station

3.4.6. Summary

In general, maximum and average values provide useful statistics but are often an over-simplified and inadequate representation of a dataset. For the measured results, the maximum values tend to fluctuate greatly and the average concentrations stay relatively stable and close to 0 ppmv or ppbv, for NMHC, and TRS and SO₂, respectively. However, as the 99th percentile is influenced by the distribution of the data, it provides a useful statistic for analyzing trends in a dataset.

The monthly data analysis for Station 842 shows that the 99th percentile data for different substances have varying trends over the reporting periods. Some pollutant concentrations increased over the reporting period, but overall, the data showed in air quality remaining relatively constant over the two-year monitoring period.

Data collected at Station 986 showed THC, SO₂, and CH₄, NMHC all showed decreasing trends over time.

The trending for the Reno Station showed variability; measurements for SO₂ and THC showed decreasing trends at different metrics, CH₄ showed increasing trends while NMHC remained relatively constant.

The correlation between values and wind directions are presented in the concentration roses (Section 3.7), which will assist in identifying from where predominant winds are carrying pollutants.

3.5. Annual Data Analysis

Analysis was completed for each station for 2015 (where available) and 2016 by calculating the maximum, 99th, 90th, 50th percentiles and minimum value of the 1-hour concentrations for each year for THC, NMHC, TRS, SO₂, and CH₄. Similar to the 99th percentile measure, 90th percentile and 50th percentile metrics indicate that 90% and 50% of data fall below that value respectively. Calculating percentiles allow data to be grouped based on the percentage of values that fall below a specific value. Arranging the data into percentile ranks can provide insight to the distribution of data and is helpful for understanding outlying values. By definition, the 50th percentile represents the median of the dataset. The results of this analysis are shown in Tables 2 and 3. The annual 99th percentile concentrations for all stations were incrementally higher in 2016 than 2015.

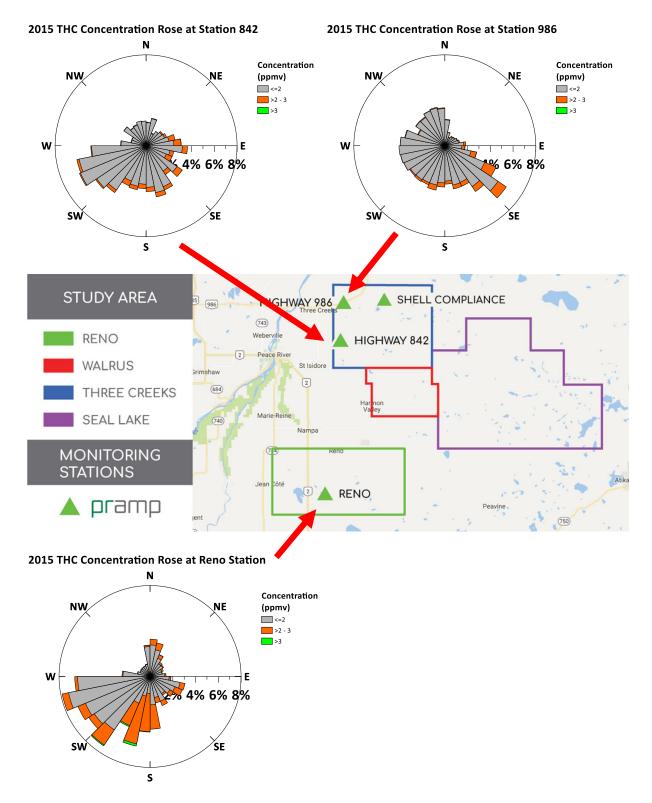
Location	Rank	THC (ppmv)	NMHC (ppmv)	TRS (ppbv)	SO2 (ppbv)	CH4 (ppmv)
	Average	1.91	0.00	0	0	1.90
	Maximum	3.17	0.01	2	3	3.16
Station 842	99 th percentile	2.15	0.00	1	1	2.14
Station 842	90 th percentile	1.97	0.00	1	1	1.96
	50 th percentile	1.90	0.00	0	0	1.90
	Minimum	1.50	0.00	0	0	1.50
	Average	1.91	0.00	0	0	1.92
	Maximum	3.28	1.16	8	5	2.43
Station 986	99 th percentile	2.12	0.08	1	1	2.10
Station 980	90 th percentile	2.00	0.00	0	1	2.00
	50 th percentile	1.90	0.00	0	0	1.90
	Minimum	1.51	0.00	0	0	1.51
	Average	1.96	0.00	0	0	1.95
	Maximum	5.25	0.35	12	3	5.25
Reno	99 th percentile	2.75	0.01	1	1	2.68
Keno	90 th percentile	2.20	0.00	1	0	2.10
	50 th percentile	1.89	0.00	0	0	1.89
	Minimum	1.54	0.00	0	0	1.54
AAAQO*	1-hour	-	-	-	172	-

Table 2: 2015 Monitoring Data Percentiles

Location	Rank	THC (ppmv)	NMHC (ppmv)	TRS (ppbv)	SO2 (ppbv)	CH4 (ppmv)
	Average	1.94	0	0	0	1.94
	Maximum	2.75	0.12	4	5	2.74
Station 842	99 th percentile	2.27	0.00	1	1	2.26
Station 842	90 th percentile	2.03	0.00	1	0	2.03
	50 th percentile	1.94	0.00	0	0	1.94
	Minimum	1.53	0.00	0	0	1.53
	Average	1.94	0	0	0	1.95
	Maximum	3.18	0.32	7	5	3.12
Station 986	99 th percentile	2.18	0.03	1	1	2.19
31011011 900	90 th percentile	2.02	0.00	1	1	2.03
	50 th percentile	1.93	0.00	0	0	1.94
	Minimum	1.72	0.00	0	0	1.74
	Average	2.00	0.00	0	0	1.99
	Maximum	6.57	0.23	14	4	6.55
Reno	99 th percentile	2.82	0.02	2	1	2.80
Keno	90 th percentile	2.12	0.00	1	0	2.11
	50 th percentile	1.96	0.00	0	0	1.96
	Minimum	1.65	0.00	0	0	1.65
AAAQO*	1-hour	-	-	-	172	-

Table 3: 2016 Monitoring Data Percentiles

* Source: Alberta Ambient Air Quality Objectives and Guidelines Summary (AEP 2017)


3.6. Concentration Roses for Continuous Monitoring Data

Much the same as wind roses, concentration roses show the frequency of contaminant concentrations travelling with winds blowing from particular directions over a specified period. The length of each "spoke" around the circle is related to the frequency of that concentration of the contaminant occurring.

Concentration roses will have the same shape as wind roses. The focus is on which direction the higher concentrations come from.

3.6.1. Total Hydrocarbons

Figure 29: Total Hydrocarbons Concentration Roses for 2015 at Station 842(left), Station 986 (right), and Reno Station (bottom)

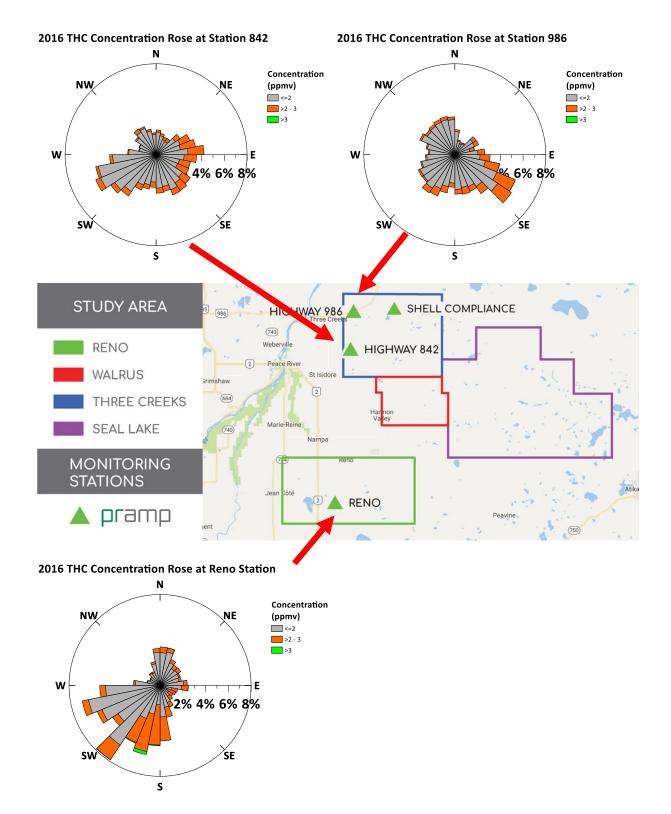
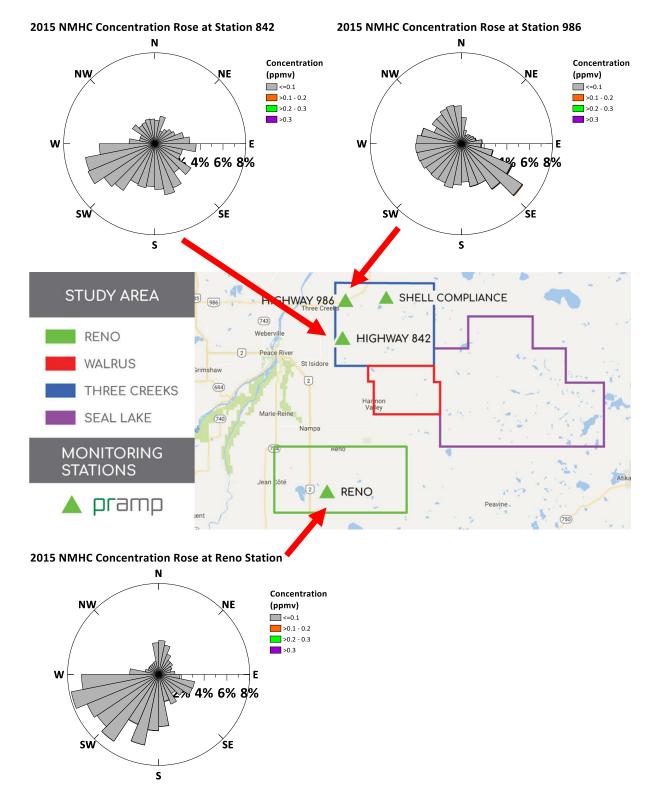
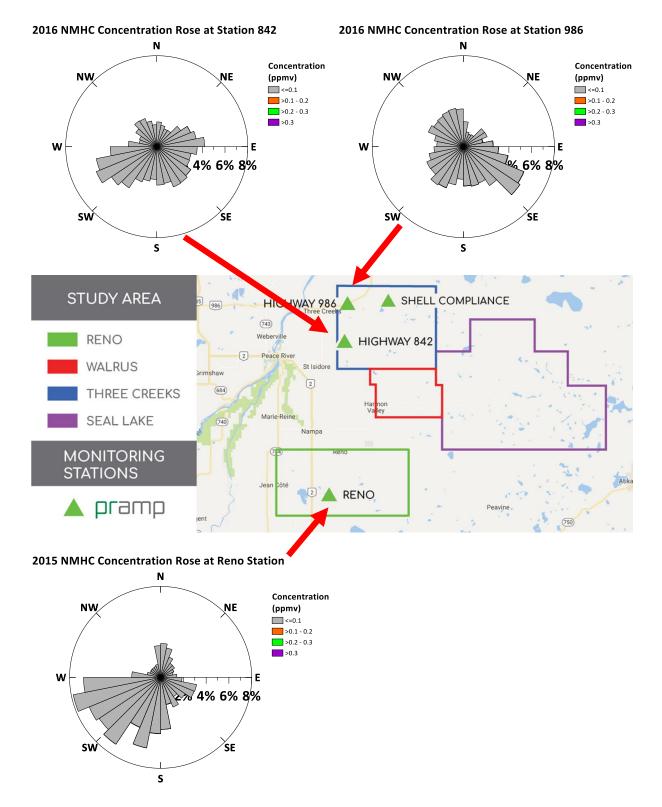



Figure 30: Total Hydrocarbons Concentration Roses for 2015 at Station 842(left), Station 986 (right), and Reno Station (bottom)



3.6.2. 3.6.2 Non-methane Hydrocarbons

Figure 31: Non-methane Hydrocarbons Concentration Roses for 2015 at Station 842 (left), Station 986 (right), and Reno Station (bottom)

3.6.3. Total Reduced Sulphur

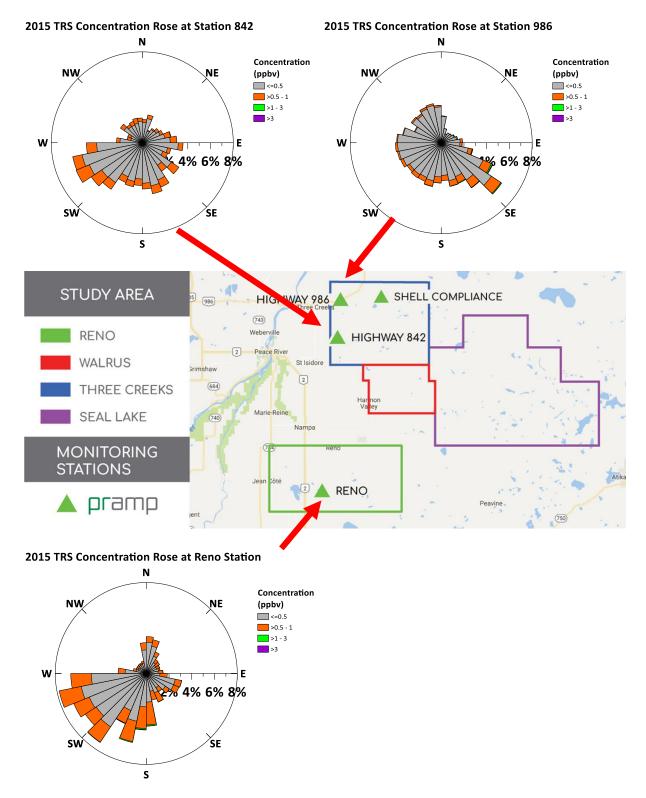


Figure 33: Total Reduced Sulphur Concentration Roses for 2015 at Station 842 (left), Station 986(right), and Reno Station (bottom)

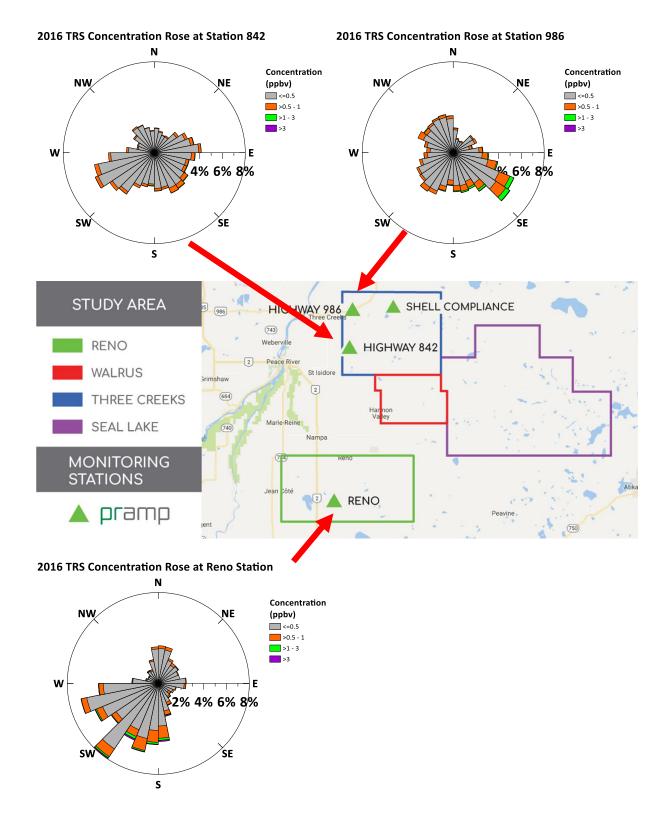


Figure 34: Total Reduced Sulphur Concentration Roses for 2016 at Station 842 (left), Station 986(right), and Reno Station (bottom)

3.6.4. Sulphur Dioxide

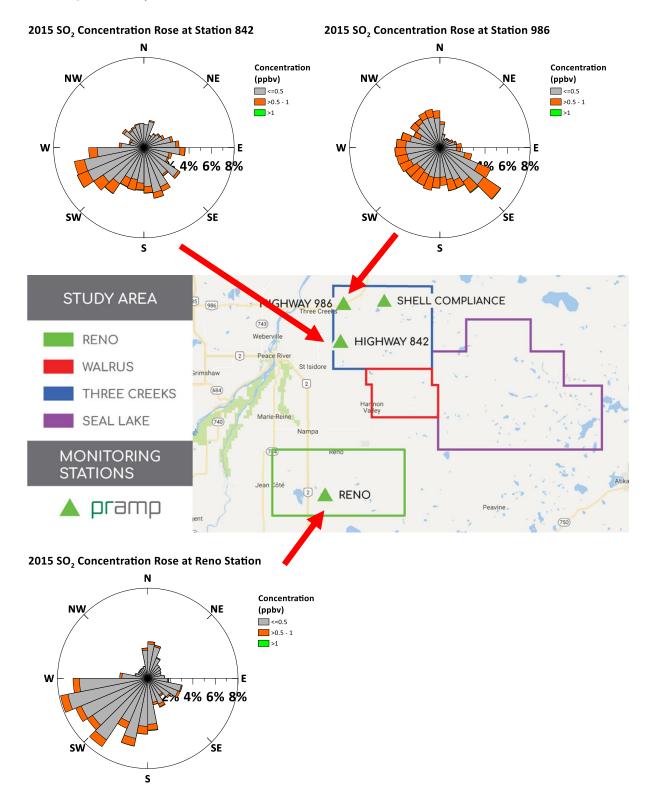


Figure 35: Sulphur Dioxide Concentration Roses for 2015 at Station 842 (left), Station 986 (right), and Reno Station (bottom)

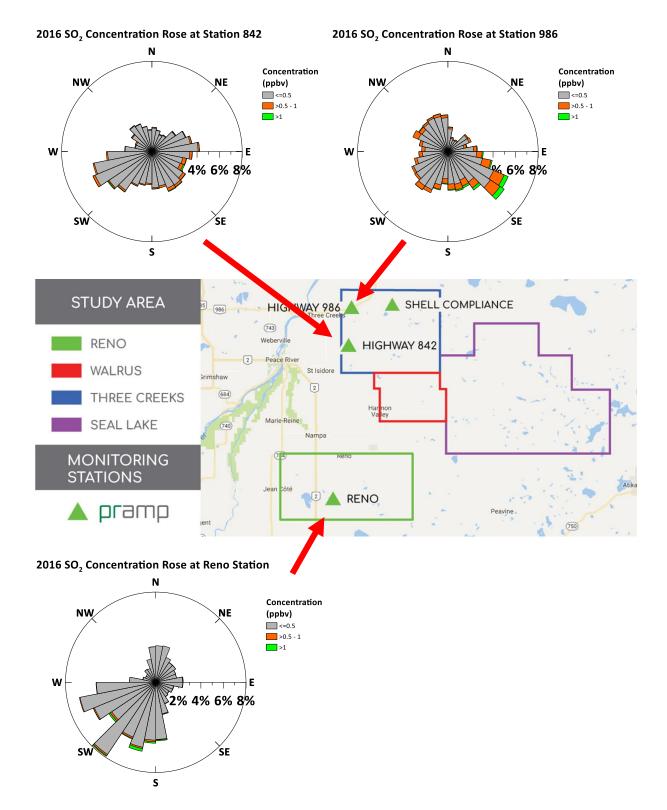


Figure 36: Sulphur Dioxide Concentration Roses for 2016 at Station 842 (left), Station 986 (right), and Reno Station (bottom)

3.6.5. Methane

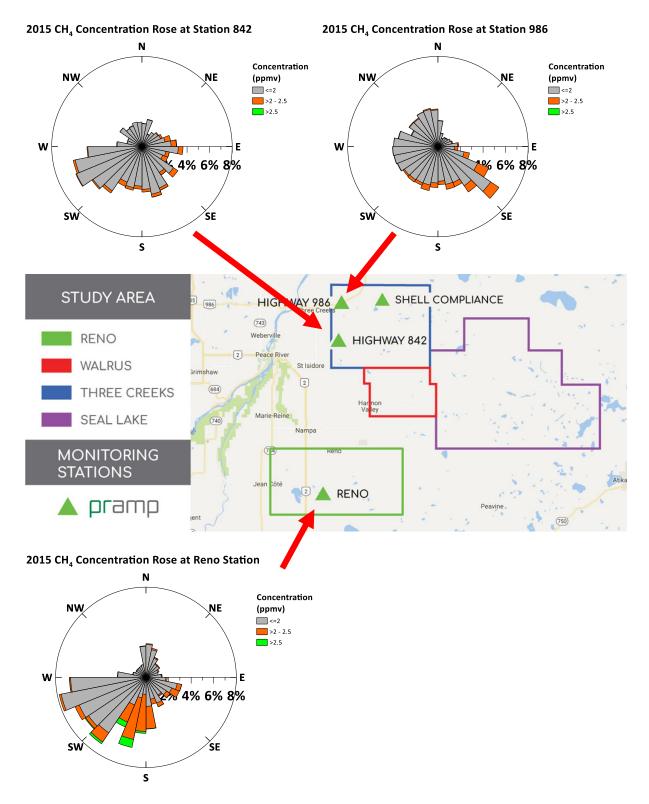


Figure 37: Methane Concentration Roses for 2015 at Station 842 (left), Station 986 (right), and Reno Station (bottom)

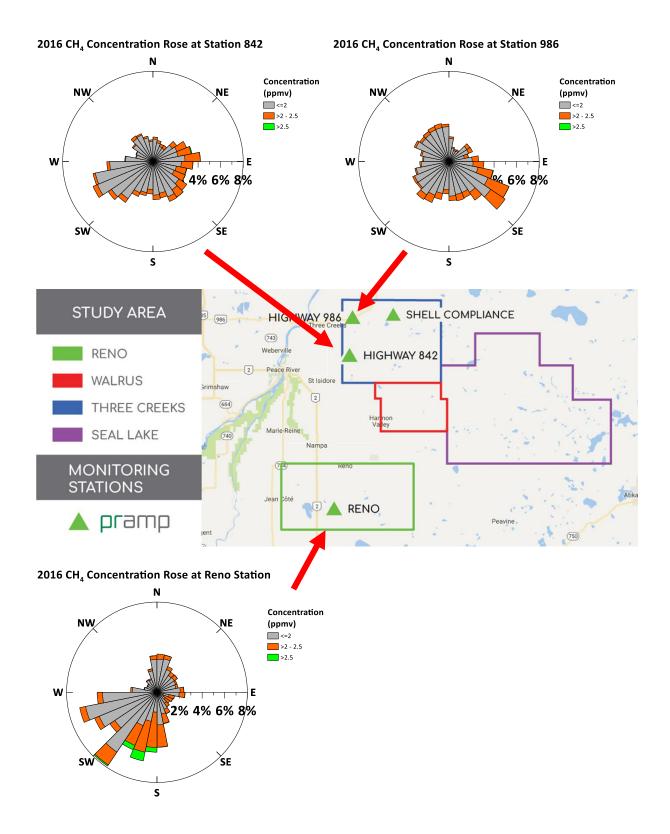


Figure 38: Methane Concentration Roses for 2016 at Station 842 (left), Station 986 (right), and Reno Station (bottom)

3.6.6. Summary

The concentration rose from Reno Station indicates that the identifiable sources for most contaminants are likely the nearby heavy oil operations in the Reno area but there are also potential sources outside of the Reno area to the southwest of the Reno area boundary (see Figure 1a). Further study work is needed to verify the sources. Likewise, for Station 986, the heavy oil operations appear to be major contributors to the monitored concentrations. However there appears to be sources not related to heavy oil operations contributing to elevated readings particularly when examining the frequency distribution of SO₂ at both Station 986 and 842. There are two landfill stations close by and upwind of Station 842 and Station 986 is relatively close to a pulp mill.

4. TRIGGERED VOLATILE ORGANIC COMPOUND SAMPLING

Canister sampling events are triggered when NMHC concentrations at a station measure a 0.3 ppmv averaged over 5 minutes. The canister samples were collected and taken to a laboratory for analysis of over 140 VOC compounds and total reduced sulphur compounds. Time and date of the canister sampling was recorded and used to cross reference the sample to the monitored data and retrieve the associated wind direction and speed.

The 2016 triggered canister VOC sampling results at the three stations are presented in Table 4. The top twelve compounds, of the 140 compounds sampled, with highest concentrations were selected and presented in Table 4. A comparison of the data to the available AAAQO (AEP 2017) was conducted as screening health exposure thresholds for all compounds were not available for comparison while preparing this report. Methane (CH₄) is also presented in Table 4. A complete list of species for each of the samples is provided in Appendix B, Table B-1.

4.1. Volatile Organic Compound Results Compared to AAAQO

There were no exceedances of the AAAQOs in 2016 however it should be noted that there are few hydrocarbon species that have an associated AAAQO.

Station ID	Sampled Date (YYYY/MM/DD)	Sampled Time (MST)	WS (km/hr)	WD	NMHC triggered concentration (ppmv)	CH4	Acetone	Acrolein	Benzene	Ethanol	Freon-113	Isobutane	Isopentane	Butane	n-Butane	n-Pentane	Toluene	Pentane
AAAQO*	n/a	n/a	n/a	n/a	n/a	n/a	2400	1.9	9	n/a	n/a	n/a	n/a	n/a	n/a	n/a	499	n/a
986	2016/01/02	11:45	8.3	180	0.36	3100	6.2	< 0.4	0.26	< 0.4	0.11	1.79	1.16	n/a	4.29	1.5	0.32	n/a
986	2016/01/05	18:30	1.2	141	0.35	3200	1.8	< 0.4	0.66	< 0.4	0.11	6.16	7.57	n/a	15.5	7.3	0.41	n/a
986	2016/01/12	18:55	6	153	0.49	2100	2.5	< 0.4	0.45	0.4	0.09	0.64	0.39	n/a	1.29	0.6	0.15	n/a
986	2016/01/13	16:55	2.6	201	0.46	2300	5	< 0.4	0.47	1.2	0.18	1.46	0.92	n/a	3.05	1.4	0.38	n/a
986	2016/01/24	15:50	3.5	206	0.48	2000	2.6	< 0.4	0.32	0.5	0.09	1.62	0.85	n/a	3.11	0.9	0.21	n/a
986	2016/03/31	08:55	6.9	161	0.55	2100	3.2	< 0.4	0.05	0.5	0.1	0.55	0.53	n/a	0.56	0.2	0.02	n/a
986	2016/05/23	02:25	2.1	152	0.33	2100	3.7	< 0.4	5.47	1.1	0.08	5.09	17.9	n/a	16.5	21.9	1.89	n/a
986	2016/06/07	22:25	1.4	85	0.34	2400	<0.5	< 0.3	5.03	1.8	0.06	0.25	10.4	n/a	4.87	13.4	1.77	n/a
986	2016/10/05	18:40	3	77	0.43	2200	4.9	< 0.5	0.93	0.9	0.05	1.07	13.8	n/a	7.73	11.9	0.16	n/a
Reno	2016/01/03	23:35	3.4	14	0.31	3700	9.1	< 0.4	3.25	2.4	0.11	3.41	2.08	n/a	8.14	2.9	1.83	n/a
Reno	2016/01/24	00:10	2.4	196	0.33	2500	3.3	< 0.4	0.47	0.6	0.09	2.77	1.38	n/a	5.63	1.4	0.86	n/a
Reno**	2016/08/19	08:55	4.1	173	0.46	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
(a) Data So n/a – data	Nberta Ambient Air Quality Objectives and Guidelines Summary (bolded values exceed) Data Source: Alberta Ambient Air Quality Objectives and Guidelines Summary (AEP 2017) a – data not available Canister was not sent to the lab for analysis due to operator error. No analytical result is available.																	

Table 4: Volatile Organic Compound Canister Sample 1-hour Average Concentrations (ppbv)

5. BACKGROUND CONCENTRATIONS OF METHANE

A background concentration is the combination of naturally occurring chemical substances and ambient concentrations of man-made chemical substances in the environment that is representative of the surrounding area. The statistical analysis of the 1-hour concentrations for each year is presented in Tables 2 and 3.

The 50th percentile reading from each station was found to be consistent from 2015 to 2016. This suggests that the 50th percentile represents the background concentration as it remains unchanged regardless of year and location. It is reasonable to conclude that a suitable background methane (CH₄) concentration would be 1.90 ppmv for the region.

6. COMPARISONS OF RESULTS ACROSS ALBERTA

The following analysis was conducted for all monitoring sites in Alberta (including Stations 842, 986, and Reno) that monitored for CH₄, NMHC, THC, and TRS during 2015 and 2016. The 99th percentile is often used as an indicator of elevated concentrations that are exceeded 1% of the time. A maximum value could be used but it occurs only once. Alberta air quality management frameworks use the annual 99th percentile as an indicator of prolonged exposures or of multiple episodes to high concentrations. For example, the annual 99th percentile target for SO₂ for a regional plan is set by reviewing past monitoring data.

The station data was downloaded from the Alberta Environment and Parks air data site (<u>http://airdata.alberta.ca/aepContent/Reports/DataDownloadMain.aspx</u>) using the one parameter at multiple stations reporting option. Additional station information reports including the airshed, location, start date, status and parameters monitored are available on the Alberta Environment and Parks air data site

(<u>http://airdata.alberta.ca/aepContent/Reports/StationInformationMain.aspx</u>). The locations of many of the stations is shown on the air quality technical map (<u>http://maps.srd.alberta.ca/AQHI</u>).

Not all stations had a full year of data, the minimum was two months. The 99th percentile for each month was calculated along with the annual or data set 99th percentile and average for each station for the available data. For ease of viewing, only the maximum 99th percentile for each month and annual averages are presented on the figures. All of the calculated statistics are presented in the tables.

In the following figures, station values were sorted from the lowest to highest annual or data set 99th percentile and then on the annual or data set average value if the annual 99th percentile were the same based on 2015 values. The annual 99th percentile is exceeded about 88 hours (1% of the time) if a full year of data is available. Higher values are indicative of more emissions in the area and higher potential for odours and complaints. Note the annual average CH₄ is typically less than 2 ppmv across the province, which is about the natural background concentration.

6.1. Methane

Figure 19 and Table 5 compare the CH₄ 1-hour average measurements in Alberta in 2015 and 2016 for 22 stations. Seventeen sites had a full year of CH₄ data in 2015. The number of months of available data is shown in brackets for the following stations missing data in 2015:

- PRAMP Reno [11]
- Edmonton Central [11]
- Calgary Central-Inglewood [9]
- Stony Mountain [Conklin Lookout] [4]
- Calgary Central 2 [3]

Seventeen sites had a full year of data in 2016. The number of months of available data is shown in brackets for the following stations missing data in 2016:

- Lethbridge [9]
- PRAMP Reno [9]
- Elk Point [5]
- Bruderheim [2]
- Calgary Central 2 [0]

The annual averages for 2015 versus 2016 are consistent and do not show increasing or decreasing trends at the majority of the stations. The annual 99th percentile of the 2015 data for Station 986 was 2.10 ppmv, 2.13 ppmv for Station 842, and 2.68 ppmv for the Reno Station. For 2016, the annual 99th percentile was 2.17 ppmv for Station 986, 2.26 ppmv for Station 842, and 3.80 for the Reno station. These all represent small increases

CH₄ readings in the Three Creeks area are among the lowest in the province. CH₄ 99th percentile annual readings in the Reno area ranked 13 out of 22 compared to other stations in the province. Note the annual average CH₄ is typically less than 2 ppmv across the province, which is about the natural background concentration.

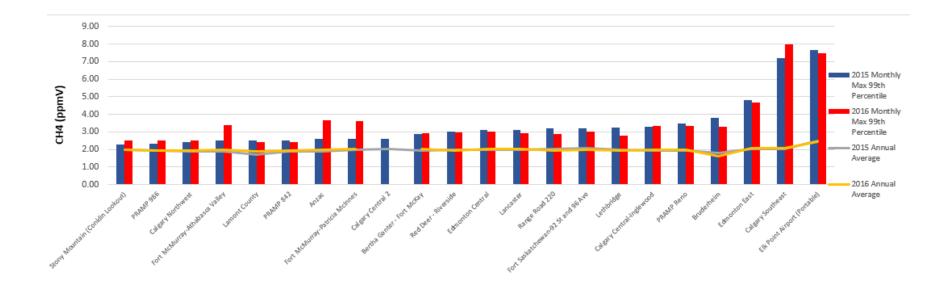


Figure 39: CH4 1-hour Average Measurements in Alberta in 2015 and 2016

Table 5: CH4 1-hour Average Measurements in Alberta for 2015 and 2016 (ppmv)

Sorted Results	Stony Mountain (Conklin Lookout)	PRAMP 986	Calgary Northwest	Fort McMurray-Athabasca Valley	Lamont County	PRAMP 842	Anzac	Fort McMurray-Patricia McInnes	Calgary Central 2	Bertha Ganter - Fort McKay	Red Deer - Riverside	Edmonton Central	Lancaster	Range Road 220	Fort Saskatchewan-92 St and 96 Ave	Lethbridge	Calgary Central-Inglewood	PRAMP Reno	Bruderheim	Edmonton East	Calgary Southeast	Elk Point Airport (Portable)
2015 Monthly Max 99th Percentile	2.30	2.33	2.40	2.49	2.50	2.50	2.60	2.60	2.60	2.90	3.00	3.10	3.11	3.19	3.20	3.26	3.29	3.49	3.80	4.82	7.18	7.68
2016 Monthly Max 99th Percentile	2.49	2.52	2.50	3.39	2.41	2.44	3.66	3.60	n/a	2.92	2.97	3.00	2.93	2.90	3.00	2.80	3.36	3.34	3.30	4.66	7.97	7.50
2015 Annual 99th Percentile	2.30	2.10	2.20	2.30	2.20	2.13	2.30	2.30	2.50	2.50	2.80	2.60	2.70	2.70	3.00	2.60	2.80	2.68	3.10	3.20	4.50	5.80
2016 Annual 99th Percentile	2.30	2.17	2.21	2.70	2.30	2.26	2.30	2.61	n/a	2.70	2.70	2.50	2.60	2.60	2.60	2.50	2.90	2.80	2.70	3.10	4.16	5.20
2015 Annual Average	1.97	1.92	1.88	1.91	1.71	1.90	1.90	1.96	2.04	1.94	1.97	1.99	1.99	2.01	2.08	1.99	1.94	1.95	1.79	2.03	2.04	2.48
2016 Annual Average	1.96	1.95	1.93	1.97	1.89	1.94	1.97	2.04	n/a	2.04	1.95	2.02	2.03	1.94	1.96	1.94	1.99	1.99	1.62	2.05	2.07	2.42

6.2. Non-methane Hydrocarbons

Figure 20 and Table 6 compare the NMHC 1-hour average measurements in Alberta in 2015 and 2016 for 20 stations. Sixteen sites had a full year of NMHC data for 2015. The number of months of available data is shown in brackets for the following stations missing data in 2015:

- PRAMP Reno [11]
- Edmonton Central [11]
- Calgary Central-Inglewood [9]
- Stony Mountain (Conklin Lookout) [4]
- Calgary Central 2 [3]

Seventeen sites had a full year of NMHC data for 2016. The number of months of available data is shown in brackets for the following stations missing data in 2015:

Sixteen sites had a full year of NMHC data for 2016. The number of months of available data is shown in brackets for the following stations missing data in 2016:

- Edmonton Central [11]
- PRAMP Reno [9]
- Elk Point [5]
- Bruderheim [2]
- Lancaster [0]
- Calgary Central 2 [0]
- Lethbridge [0]

Figure 20 shows that the maximum monthly 99th percentile values for 8 of the 22 stations were equal or lower in 2016 compared to 2015 with a few notable exceptions in Fort McMurray likely the result of the large forest fire event. Annual averages are very close for 2015 and 2016 at most of the stations. Annual averages are very close for 2015 and 2016 at most of the stations.

NMHC readings in the Peace River Area are amongst the lowest in the province. The annual 99th percentile of the 2015 data for Station 842 was 0.00 ppmv, 0.01 ppmv for the Reno Station, and 0.08 ppmv for Station 986.

The annual 99th percentile of the 2016 data for Station 842 was 0.00 ppmv, 0.02 ppmv for the Reno Station, and 0.03 ppmv for Station 986.

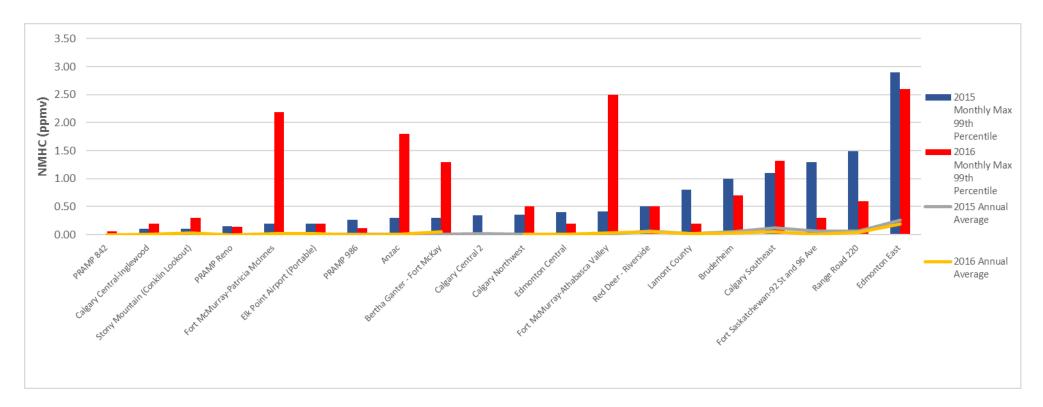


Figure 40: NMHC 1-hour Average Measurements in Alberta in 2015 and 2016

Table 6: NMHC 1-hour Average Measurements in Alberta for 2015 and 2016 (ppmv)

Sorted Results	PRAMP 842	Calgary Central-Inglewood	Stony Mountain (Conklin Lookout)	PRAMP Reno	Fort McMurray-Patricia McInnes	Elk Point Airport (Portable)	PRAMP 986	Anzac	Bertha Ganter - Fort McKay	Calgary Central 2	Calgary Northwest	Edmonton Central	Fort McMurray-Athabasca Valley	Red Deer - Riverside	Lamont County	Bruderheim	Calgary Southeast	Fort Saskatchewan-92 St and 96 Ave	Range Road 220	Edmonton East
2015 Monthly Max 99th Percentile	0.00	0.10	0.10	0.15	0.20	0.20	0.27	0.30	0.30	0.35	0.36	0.40	0.42	0.50	0.80	1.00	1.10	1.30	1.49	2.90
2016 Monthly Max 99th Percentile	0.06	0.20	0.30	0.14	2.19	0.20	0.12	1.80	1.30	n/a	0.50	0.20	2.50	0.50	0.20	0.70	1.31	0.30	0.60	2.60
2015 Annual 99th Percentile	0.00	0.00	0.10	0.01	0.00	0.20	0.08	0.20	0.20	0.20	0.10	0.20	0.20	0.40	0.40	0.70	0.67	0.80	0.50	1.80
2016 Annual 99th Percentile	0.00	0.10	0.10	0.02	0.30	0.20	0.03	0.20	0.50	n/a	0.20	0.10	0.80	0.30	0.20	0.60	0.50	0.20	0.30	1.60
2015 Annual Average	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.00	0.01	0.01	0.06	0.02	0.05	0.12	0.07	0.07	0.25
2016 Annual Average	0.00	0.00	0.02	0.00	0.01	0.02	0.00	0.01	0.05	n/a	0.01	0.00	0.03	0.05	0.02	0.03	0.05	0.01	0.04	0.19

6.3. Total Hydrocarbons

Figure 21 and Table 7 compare the THC 1-hour average measurements in 2015 and 2016 for 50 stations in Alberta. Of the 40 stations with data in both 2015 and 2016, 22 stations showed equal or lower maximum 99th monthly percentile in 2016 than in 2015. The THC annual averages values are lower for 2016 at 17 of the 40 stations with data for both years.

Thirty-three sites had a full year of THC data in 2015. The number of months of available data is shown in brackets for the following stations missing data in 2015:

- Edmonton Central [11]
- Clairmont Portable [9]
- Calgary Central-Inglewood [9]
- Millennium Mine [8]
- Beverly [8]
- Sherwood Park [New] [8]
- Stony Mountain (Conklin Lookout) [4]
- Rimbey Townsite [4]
- Eagle Hills South [3]
- Crossfield-Carstairs (Portable) [3]
- Calgary Central 2 [3]
- Rimbey-Simpson [2]
- Sundre Northeast [2].

Thirty-one sites had a full year of THC data in 2016. The number of months of available data is shown in brackets for the following stations missing data in 2016:

- Beverly 1 [10]
- Violet Grove [10]
- Sherwood Park (New) 1 [10]
- PRAMP Reno [10]
- Lethbridge 1 [9]
- Edmonton South 1 [9]
- Millennium Mine [8]
- Bonnyville Station (Portable) [7]
- Bruderheim [2]
- Rimbey-Simpson (Portable) [0]
- Rimbey Townsite [0]
- Millennium Mine [0]
- Clairmont-Portable [0]
- Crossfield-Carstairs (Portable) [0]
- Sundre Northeast (Portable) [0]
- Lamont County [0]
- Eagle Hills South (Portable) [0]

• Calgary Central 2 [0].

Note that the additional sites with THC monitoring compared to NMHC and CH₄ monitoring have a single instrument that measure THC only.

Figure 20 shows that the maximum monthly 99th percentile values for 8 of the 22 stations were equal or lower in 2016 compared to 2015. Annual averages are very close for 2015 and 2016 at most of the stations.

The annual 99th percentile of the 2015 data for Station 986 was 2.12 ppmv, 2.16 ppmv for Station 842, and 2.75 ppmv for the Reno Station. THC readings in the Three Creeks area are amongst the lowest in the province. THC 99th percentile annual readings in the Reno area rank 18 out of 49 stations in the province.

The annual 99th percentile of the 2015 data for Station 986 was 2.12 ppmv, 2.16 ppmv for Station 842, and 2.75 ppmv for the Reno Station. THC readings in the Three Creeks area are amongst the lowest in the province. THC 99th percentile annual readings in the Reno area rank 18 out of 49 stations in the province.

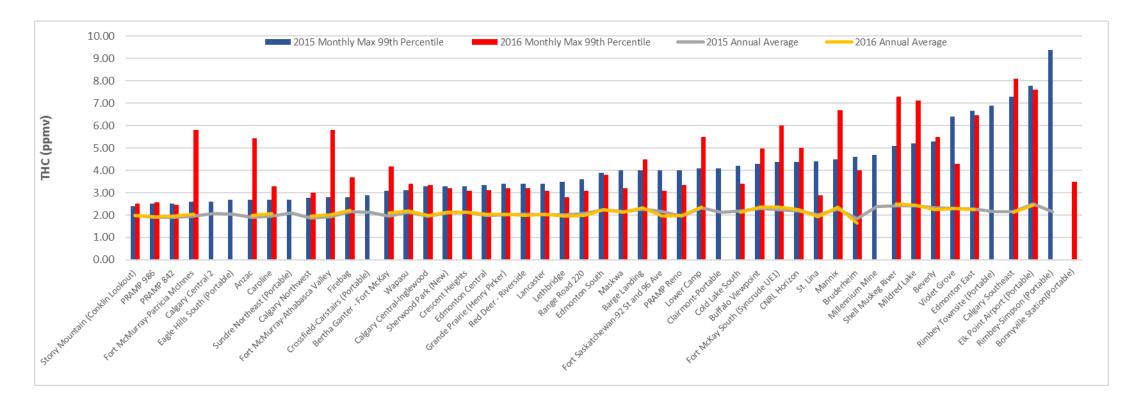


Figure 41: THC 1-hour Average Measurements in Alberta in 2015 and 2016

Table 7: THC 1-hour Average Measurements in Alberta in 2015 and 2016 (ppmv)

Sorted Results	Stony Mountain (Conklin Lookout)		FNAMP 900	PRAMP 842	Fort McMurray-Patricia McInnes	Calgary Central 2	Eagle Hills South (Portable)	Anzac	Caroline	Sundre Northeast (Portable)	Calgary Northwest	ray-Aunabasca		Crossfield-Carstairs (Portable)	Bertha Ganter - Fort McKay	Wapasu	Calgary Central-Inglewood	Sherwood Park (New)	Crescent Heights	Edmonton Central	Grande Prairie (Henry Pirker)	Red Deer - Riverside	Lancaster	Lethbridge	Range Road 220	Edmonton South	Maskwa	Barge Landing	Fort Saskatchewan-92 St and 96 Ave				Cold Lake South Buffalo Viewnoint	Fort McKav South (Svncrude UE1)		Ct lina	ot. cina Mannix	Bruderheim	Millennium Mine	Shell Muskeg River	Mildred Lake	Beverly	Violet Grove	Edmonton East	Rimbey Townsite (Portable)	Calgary Southeast	Elk Point Airport (Portable)	Rimbey-Simpson (Portable)	Bonnyville Station(Portable)
2015 Monthly Max 99th Percentile	2.4	10 2.	51 2	.52 2	.60 2.	.60 2	.69 2	2.70 2	.70 2	.70 2	.76 2.:	80 2	.80 2	.90 3	.10 3	.12 3	8.29 3	8.30 3	.30 3	.34 3	.40 3	8.40 3	3.41 3	.50 3	.59 3	.90 3	.99 4	1.00 4.	00 4.	01 4.	09 4.	10 4.	20 4.2	9 4.3	8 4.3	38 4.4	40 4.4	8 4.5	9 4.70	5.09	5.20	5.28	8 6.39	6.66	6.90	7.30	7.78	9.40	n/a
2016 Monthly Max 99th Percentile	2.5	50 2.	56 2	.45 5	.79 n	/a n	ı/a S	5.44 3	.30 n	/a 3	.00 5.1	80 3	.70 n	/a 4	.19 3	.40 3	9.36 3	3.20 3	.10 3	.11 3	.20 3	8.20 3	3.09 2	80 3	.10 3	.80 3	.20 4	1.49 3.	09 3.	34 5.	49 n,	/a 3.	.40 4.9	9 6.0	00 5.0	00 2.9	90 6.7	0 4.0) n/a	7.30) 7.14	5.50	0 4.30	6.46	i n/a	8.08	7.60	n/a	3.50
2015 Annual 99th Percentile	2.3	30 2.	12 2	.16 2	.30 2.	50 2	.51 2	2.30 2	.50 2	.60 2	.30 2.4	40 2	.50 2	.80 2	.70 2	.59 2	2.80 2	2.90 2	.90 2	.70 2	.90 3	3.10 2	2.90 2	.90 3	.00 3	.20 3	.20 ŝ	3.20 3.	70 2.	75 3.	40 3.	40 3.	.20 3.!	50 3.3	30 3.5	50 2.1	70 3.4	0 3.8) 4.30	9 4.00	4.00	4.00	0 4.23	4.70	5.70	4.80	5.90	5.70	n/a
2016 Annual 99th Percentile	2.3	30 2.	18 2	.27 2	.90 n	/a n	ı/a 2	2.40 2	.80 n	/a 2	.40 3.:	30 2	.70 n	/a 3	.00 2	.70 2	2.90 2	2.80 2	.70 2	.60 2	.70 3	3.00 2	2.70 2	.60 2	.70 3	.10 2	2.70 3	3.50 2.	60 2.	82 3.	70 n,	/a 3.	.00 3.:	70 3.7	70 3.7	70 2.!	50 4.1	0 3.3	1 n/a	4.30	9 4.30	3.60	0 3.70	4.50	n/a	4.60	5.30	n/a	3.10
2015 Annual Average	1.9	97 1.	91 1	.91 1	.96 2.	.06 2	.05 1	l.91 1	.95 2	.09 1	.88 1.5	92 2	.15 2	.12 1	.95 2	.12 1	1.95 2	2.09 2	.12 1	.99 2	.02 2	2.04 2	2.01 2	.01 2	.08 2	.25 2	2.16 2	2.28 2.	15 1.	96 2.	33 2.	13 2.	.18 2.3	31 2.2	25 2.1	18 2.0	00 2.2	8 1.8	1 2.39	9 2.40	2.40	2.34	4 2.30	2.28	3 2.17	2.16	2.49	2.17	n/a
2016 Annual Average	1.9	98 1.	94 1	.94 2	.05 n	/a n	1/a 1	1.99 2	.06 n	/a 1	.94 2.4	00 2	.22 n	/a 2	.09 2	.19 1	1.99 2	2.13 2	.14 2	.03 2	.06 1	99 2	2.04 1	.95 1	.97 2	.25 2	2.12	2.34 1.	97 2.	2.	37 n,	/a 2.	.13 2.3	15 2.3	15 2.2	24 1.9	94 2.3	7 1.6	5 n/a	2.50) 2.45	5 2.23	3 2.30	2.24	n/a	2.13	2.44	n/a	2.11

6.4. Total Reduced Sulphur

Figure 22 and Table 8 compare the TRS 1-hour average measurements in 2015 and 2016 for 25 stations in Alberta. Of the 19 sites with data in both 2015 and 2016, 15 stations showed equal or lower. Some stations show reduction in TRS maximum monthly 99th percentile values in 2016 than in 2015. The TRS annual averages values are lower for 2016 at 12 of the 19 stations with data for both years.

Seventeen sites had a full year of TRS data in 2015. The number of months of available data is shown in brackets for the following stations missing data in 2015:

- Clairmont Portable [9]
- Millennium Mine [8]
- Stony Mountain (Conklin Lookout) [5]
- Rimbey Townsite [4]
- Eagle Hills South [3]
- Crossfield-Carstairs (Portable) [3]
- Rimbey-Simpson [2]
- Sundre Northeast [2]

Fifteen sites had a full year of TRS data in 2016. The number of months of available data is shown in brackets for the following stations missing data in 2016:

- Fort McMurray-Athabasca Valley [11]
- PRAMP Reno [10]
- Hinton [4]
- Millennium Mine [0]
- Clairmont-Portable [0]
- Rimbey Townsite [0]
- Sundre Northeast [0]
- Crossfield-Carstairs (Portable) [0]
- Eagle Hills South [0]

The 99th percentile of the 2016 data for stations 986 and 842 was 1 ppbv and did not change from 2015 to 2016. The 99th percentile of the 2015 data for the Reno station was also 1 ppbv. The resolution of the TRS instrument is 1 ppbv which is the most common 99th percentile value for all of the stations.

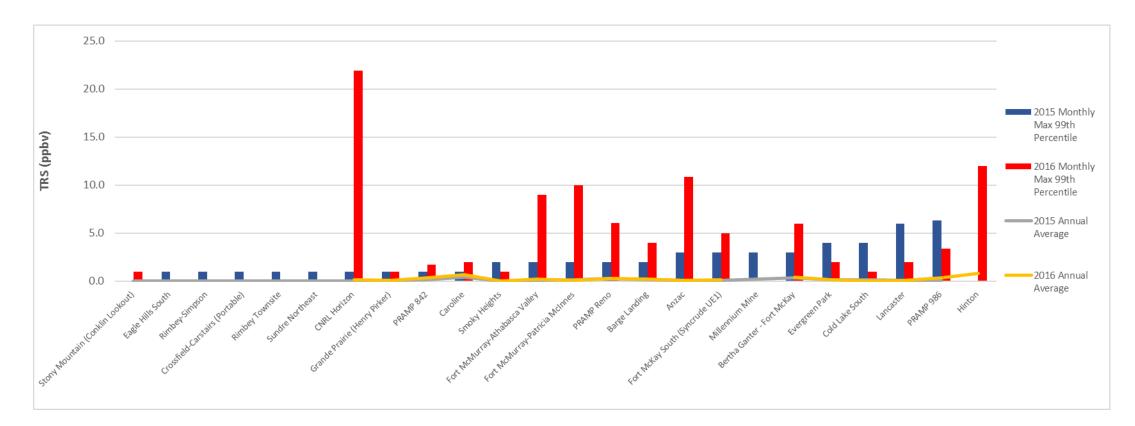


FIGURE 22: TRS 1-hour Average Measurements in Alberta in 2015 and 2016

Table 8: TRS 1-hour Average Measurements in Alberta in 2015 and 2016 (ppbv)

Sorted Results	Stony Mountain (Conklin Lookout)	Eagle Hills South	Rimbey-Simpson	Crossfield-Carstairs (Portable)	Rimbey Townsite	Sundre Northeast	CNRL Horizon	Grande Prairie (Henry Pirker)	PRAMP 842	Caroline	Smoky Heights	Fort McMurray-Athabasca Valley	Fort McMurray-Patricia McInnes	PRAMP Reno	Barge Landing	Anzac	Fort McKay South (Syncrude UE1)	Millennium Mine	Bertha Ganter - Fort McKay	Evergreen Park	Cold Lake South	Lancaster	PRAMP 986	Hinton
2015 Monthly Max 99th Percentile	0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0	4.0	4.0	6.0	6.3	n/a
2016 Monthly Max 99th Percentile	1.0	n/a	n/a	n/a	n/a	n/a	21.9	1.0	1.7	2.0	1.0	9.0	10.0	6.1	4.0	10.8	5.0	n/a	6.0	2.0	1.0	2.0	3.4	12.0
2015 Annual 99th Percentile	0.0	0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	2.0	2.0	1.0	2.0	1.0	1.0	n/a
2016 Annual 99th Percentile	1.0	n/a	n/a	n/a	n/a	n/a	2.0	1.0	0.8	1.0	1.0	4.0	2.0	1.8	2.0	1.0	2.0	n/a	2.0	1.0	1.0	1.0	1.4	7.0
2015 Annual Average	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.2	0.4	0.0	0.1	0.2	0.3	0.2	0.1	0.1	0.2	0.4	0.2	0.1	0.1	0.1	n/a
2016 Annual Average	0.0	n/a	n/a	n/a	n/a	n/a	0.2	0.1	0.3	0.7	0.0	0.3	0.1	0.3	0.2	0.1	0.1	n/a	0.4	0.1	0.0	0.1	0.4	0.8

7. COMPLAINTS AND MONITORING RESULTS

The AER recorded complaints from residents and assigned the location of the complaint to each of the three stations. AER complaints were collected and analyzed as follows:

- Station 842 showed a decrease in the number of complaints from 39 in 2015 to 15 in 2016
- Station 986 showed a decrease in the number of complaints from 6 in 2015 to 4 in 2016
- Reno Station showed a decrease in the number of complaints from 11 in 2015 to 2 in 2016

The associated time, meteorological data (wind speed and wind direction), THC reading, and triggered canister event were all correlated against each complaint. If the complaint did not occur on the clock hour (for example, complaint time is recorded as 21:30), meteorological data and concentrations from both bordering clock hours were considered in the correlation assessment.

Based on the latitude and longitude of the complaint, meteorological data (wind speed and wind direction), and THC concentration, are recorded for the station closest to where the complaint was logged. It should be noted that with the current network design, it is not possible to monitor all areas of the airshed at all times however it is possible for area residents to detect odours at any place at any time. Therefore, when a complaint is assigned to a monitoring station, it is considered to be reasonably close for correlation analysis of the complaint and wind speed, wind direction, THC concentrations, and other parameters; the complaint was not necessarily logged at the exact location of the monitoring station. Appendix C has a complete record of complaints for 2015-16.

Each chart in Sections 7.1 to 7.3 shows the THC readings on the primary Y axis. Complaints are shown in the legend. Complaints without elevated THC present may suggest that concentrations of sulphur compounds are responsible. However, a correlation between complaints, TRS, and SO₂ concentrations was also assessed but no relationship was found.

7.1. Station 842

Figure 40 shows the correlation between the complaints and the monitored data for THC Station 842. Complaints reported for this station include formal complaints received from the AER.

In 2016, there is a marked decrease in the number of complaints received with some of the complaints occurring during hours with marginally elevated THC concentrations. The complaint record dating back to 2014 shows an overall decrease in the number of complaints received by the AER.

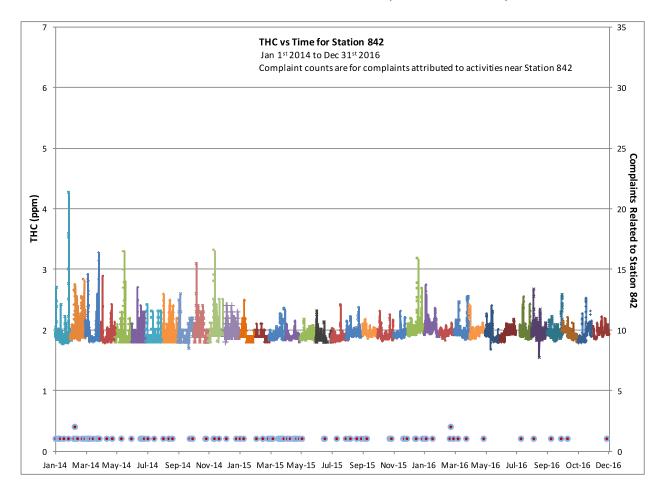


Figure 42: THC and Complaints Correlation at Station 842

7.2. Station 986

Figures 41 shows the correlation between the complaints and the monitored data for THC at Station 986. There were fewer complaints recorded around this station than Station 842. The complaint record dating back to 2014 shows an overall decrease in the number of complaints received by the AER.

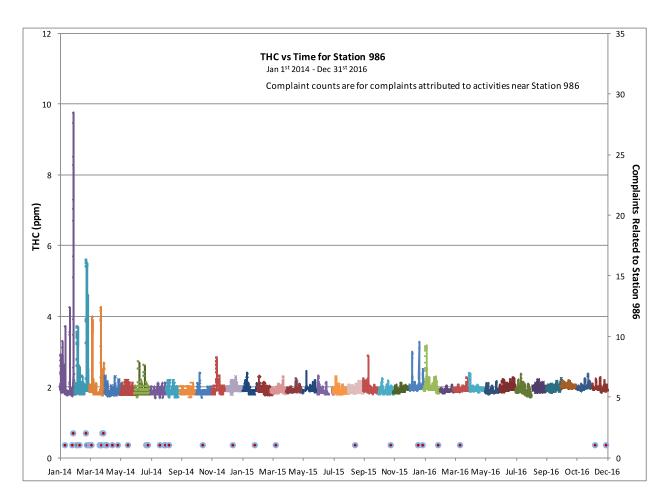


Figure 43: THC and Complaints Correlation for Station 986

7.3. Reno Station

Figures 42 shows the correlation between the complaints and the monitored data for THC at Reno Station. Other contaminants do not appear to have correlation with complaints. Similar to the other stations in the PRAMP network, the complaint record dating back to 2014 shows an overall decrease in the number of complaints received by the AER.

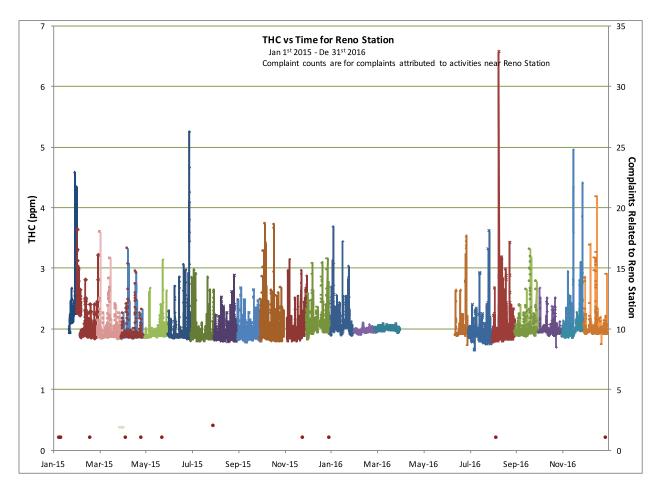


Figure 44: THC and Complaints Correlation for Reno Station

8. CONCLUSIONS

PRAMP collected concentration data of THC, NMHC, TRS, SO₂, and CH₄ at three continuous monitoring stations in the Peace River Area throughout 2015 and 2016. The data was summarized and analyzed using statistical methods to quantify the air quality in the area. Wind speed and direction was also monitored to further understand the potential sources of substances detected by the monitoring. Triggered sampling events provided additional concentration data.

Based on hourly measurement data, THC, NMHC, SO₂, TRS, and CH₄ concentrations show increasing and decreasing trends or patterns between 2015 and 2016 depending on the metric examined (average, 99th percentile, 90th percentile, etc.). It should be noted that all of the changes are incremental, particularly when considering the historically elevated concentrations of hydrocarbons at station 986 and 842. The existing monitoring program should continue with the same measurement parameters to continue to examine trends in concentrations.

The Reno monitoring station continues to see elevated hydrocarbon concentrations relative to current measurements at the other PRAMP sites; despite being elevated, measurements at Reno are lower than the historical maximums at 986 and 842. To improve the collective understanding of air quality in the region, PRAMP is investigating the potential causes for these elevated measurements and sporadic 'spikes'. This ongoing investigation may include additional monitoring, credible third-party data sources, further study of existing PRAMP data in 2017-18, and field surveillance. The extent of the production shutdown in the Reno area in 2016 (noted in section 3.1) and the potential influence it had on air quality is also being investigated.

Although the number of canister events has decreased over time, further analysis of the historical analytical data is required to understand the changes-over-time in ambient concentrations of hydrocarbon species of interest. In 2015, AEP completed a preliminary assessment of the hydrocarbon species measured through PRAMP's canister program; that study may serve as a template for PRAMP to complete an updated analysis of new data.

The canister program is a high-profile element of PRAMP's overall monitoring program. Although a more rigorous sample handling protocol was implemented, contractor error has resulted in lost data. With fewer canisters being collected, each sample is all that more valuable in telling the ongoing story of the ambient concentration of hydrocarbon species in the Peace River Area. A thorough review of the canister sample handling protocol is currently underway to ensure that appropriate corrective actions are implemented to eliminate data loss.

9. REFERENCES

Alberta Energy Regulator (AER). 2014a. Report of Recommendations on Odours and Emissions in the Peace River Area - AER Response. Calgary, Alberta. April 15, 2014. https://www.aer.ca/documents/applications/hearings/2014-AER-response-PeaceRiverProceeding.pdf

Alberta Energy Regulator (AER). 2014b. Taking Action in Peace River. Progress Update. October 2014. https://www.aer.ca/documents/about-us/Peace-River/PR AirMonitoringReport October2014.pdf

Alberta Energy Regulator (AER). 2017. Directive 084: Requirements for Hydrocarbon Emission Controls and Gas Conservation in the Peace River Area. February 23, 2017. 28pp. <u>https://www.aer.ca/documents/directives/Directive084.pdf</u>

Alberta Environment and Parks (AEP). 2015. Study of Ambient Hydrocarbon Concentrations in Three Creeks, Alberta. Air and Climate Change Policy Branch. August 2015. ISBN No. 978-1-4601-2379-9. http://aep.alberta.ca/air/reports-data/documents/AmbientHydrocarbonThreeCreeks-Aug2015.pdf

Alberta Environment and Parks (AEP). 2017. Alberta Ambient Air Quality Objectives and Guidelines Summary. Air Policy Branch. July 2017. ISBN: 978-1-4601-3485-6. 6 pp. <u>http://aep.alberta.ca/air/legislation/ambient-air-quality-objectives/documents/AAQOSummary-Jun2016.pdf</u>

Peace River Area Monitoring Program (PRAMP). 2015. Terms of Reference Peace River Area Monitoring Program (PRAMP). Approved May 28, 2015. <u>https://maportal.gov.ab.ca/EXT/MeNet/Lists/Practices/Attachments/721/PRAMP%20Terms%20of%2</u> <u>OReference%20Final%2028May2015.pdf</u>

IHS, Inc. (HIS). 2016. GDM Midstream and Transportation Infrastructure Data [IHS Data Hub]. Calgary, Alberta. National Institute of Health (NIH) 2016. Pubchem Open Chemistry Database. https://pubchem.ncbi.nlm.nih.gov/

APPENDIX A Monitoring Station Audit

measure. assess. inform.

Alberta Environmental Monitoring, Evaluation and Reporting Agency

AEMERA Monitoring Main Floor Bldg 3 McIntyre Center 4946 – 89 street Edmonton, AB, T6E 5K1 Telephone: 780.427.7888 aemera.org

April 15, 2016

Ms. Allison Fisher Regional Specialist – Air, Noise, and Env Reporting Shell Canada Limited 400 – 4th Ave SW Calgary, Alberta, T2P 2H5

Ms. Kenda Friesen Regulatory Coordinator Penn West Suite 200 Penn West Plaza 207-9th Avenue, SW Calgary, Alberta, T2P 1K3

Mr. Anthony Travers Senior Environmental Coordinator Baytex Energy Limited Suite 2800 Centennial Place 520-3rd Avenue, SW Calgary, Alberta, T2P 0R3

Dear Ms. Fisher, Ms. Friesen, and Mr. Travers:

Subject: PRAMP Ambient Air Monitoring Station Audits

AEMERA has received and reviewed the Shell Peace River In-situ response letter dated April 15, 2016. Based on the content of the letter and timelines provided, although AEMERA has not yet verified the findings, AEMERA is satisfied that all items noted have or are being addressed.

Should you have any questions or concerns please contact the undersigned via email at <u>shea.beaton@aemera.org</u> or via telephone at 780 427-7888.

Yours truly,

Shea Beaton Monitoring Systems Auditor

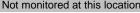
Attachments - None

cc: Karla Reesor – Pramp Facilitator
 Kate Humphreys, Robyn Kutz Semeniuk – Shell Canada
 Anthony Traverse - Baytex
 Bob Myrick - AEMERA
 Doug Wong – AER, Michael Zelensky – AER, Wally Qiu – AER, Yan Liu – AEP
 Trina Whitsitt – Maxxam Analytics

Audit Summary

			Pag	
Facility / Zone			PRAMP	
Total # of parameters that passed			9	
Total # of parameters audited in the network			9	
Date(s) of the audit			March 8, 2016	
Issue Date of Audit Summary			March 15, 2016	
Station Name			PRAMP Three Creeks 986b	
Auditor			Shea Beaton / Al Clark	
Audit Date			March 8, 2016	
Critical	Pass		Fail	
H ₂ S	х			
SO ₂	х			
TRS	х			
NMHC	х			
Wind Speed / Wind Direction	х			
Wind head Orientation	х			
Manifold Fan	х			
Zero/Span Systems Operational	х			
Inspection Items	OK		Need for Improvement	
Sample pump venting/scrubbing	Х			
Heating / Air Conditioning	х			
Manifold		Х	Dusty	
Sample Lines	х			
Safety	х			
Site Conditions	Х			
Non-critical	OK		Opportunity for Improvement	
RH	х			
Station Temperature		Х	+/- 1°C	
Ambient Temperature	x +/- 1°C			
Station Condition	х			
Station Documentation		Х	Needs review / or missing	
Not monitored at this location				

Audit Summary


		Pag		
		PRAMP		
		9		
	9			
		March 8, 2016		
		March 15, 2016		
		PRAMP Three Creeks 842b		
•		Shea Beaton / Al Clark		
	March 8, 2016			
Pass		Fail		
Х				
х				
Х				
х				
Х				
Х				
х				
Х				
OK		Need for Improvement		
Х				
Х				
	Х	Dirty		
х				
Х				
Х				
OK		Opportunity for Improvement		
Х				
х				
х				
х				
	Х	Needs review / or missing		
ſ	X X	Pass X X X		

Audit Summary

			,	Page		
Facility / Zone			PRAMP			
Total # of parameters that passed	1		9			
Total # of parameters audited in the network	1		9			
Date(s) of the audit			March 8, 2016			
Issue Date of Audit Summary			March 15, 2016			
Station Name			PRAMP Reno			
Auditor			Shea Beaton / Al Clark			
Audit Date		March 8, 2016				
Critical	Pass					
H ₂ S	Х					
SO ₂	х					
TRS	х					
NMHC	х					
Wind Speed / Wind Direction	х					
Wind head Orientation	х					
Manifold Fan	х					
Zero/Span Systems Operational	Х					
Inspection Items	OK		Need for Improvement			
Sample pump venting/scrubbing	х					
Heating / Air Conditioning	х					
Manifold		Х	Dusty			
Sample Lines	х					
Safety	х					
Site Conditions	Х					
Non-critical	OK		Opportunity for Improvement			
RH	х					
Station Temperature		Х	+/- 1°C			
Ambient Temperature	X					
Station Condition	х					
Station Documentation		Х	Needs review / or missing			
Not monitored at this location						

	STATI	ON AUI	DIT
			File No. 2015 - 155A/157A
Date: March 8	3, 2016	Performed by:	Shea Beaton / Al Clark
StationName:PRAMPFacility/Zone:PRATemp:		Operator:	Reno Maxxam 700mmHg
La	Latitude N 55°, ongitude W 117° Elevation cumentation 0	, 03', 27.1" 641m	plete
Manifold Material Manifold Condition	Glass Good	_	
Meteorological Wind Speed Direction	Observed 193° 2.6 Km/H		Audit Value SSW 3-5 Km/H
Station Temperature	16.4 C		18.4 C
Relative Humidity	59.1%		59.3%
Ambient Temperature	3.7 C		3.3 C
Solar Radiation	NA		NA
Precipitation	NA		NA
Remarks: - Site documents missing update. - Station temp sensor rea		w and cross se	ction view. Needs review and

		SO ₂	ANAL	YZER AU	DIT			
				Fi	le No. 2015 -	155A		
Deter	Marah	0.0040	n					
	March	8, 2016	- P	erformed by:	Shea Beaton / Al			
Station Name:	PRAM	P Reno		Location:	Reno			
			-			-		
Facility/Zone:			-	Operator:		-		
	Temp.	21.8 C	Baro	metric Press.	700 mmHg	-		
Monitor								
Make/Model:				Serial No:		-		
Inlet flow (sccm)):			Full Scale Range pp		-		
Last cal. Date:		February	/ 11, 2016	Old Correction Fact	or: 0.999	-		
Zero/Bkg_	67	7.5						
Span Coef	0.9	935	-					
Calibrator			-					
	n Method:	GAS D						
		R&R M		AN	AU # : 16	98		
C	ylinder # :	CALO	16720	SO ₂ Concentration	PPM: 98.			
Cal	ibrator Flo	W	Calculated	Indicated	% Diff	% Difference		
	(sccm)		Conc.	Concentration	u VS			
Air	Gas	Total	(ppm)	(ppm)	Audit Gas	Limits		
4976	0.0	4976	0.000	0.001				
4993	19.9	5013	0.391	0.388	-1%	± 10%		
4995	9.8	5005	0.192	0.192	-1%	± 10%		
4996	4.9	5001	0.096	0.095 Verage Percent Diffe	erence 1%	± 10%		
Linear Regres	sion Ana	lvsis	Absolute A	Verage Percent Dille	erence 1%			
Linda Rogi oo		iyele.	v=mx+b (w	here x=calculated conc	entration, v=indicated o	concentration)		
			2 1	LIMIT		,		
	Correla	tion Coeff.=		≥ 0.99	5			
		m (Slope)=		0.85-1				
b (Interce	ept as % of	f full scale)=	0.1227	± 3%	F.S.			
Remarks:								

		TRS	ANAL	YZER A					
					File No.	2015 -	156A		
Date:	March	8, 2016	F	Performed by:					
Station		0, 2010	-		0.104				
	PRAM	P Reno		Location:	Re	no			
Facility/Zone:			-						
				Operator:					
	Temp.	21.8 C	- Baro	ometric Press.	700 m	nmHg			
Monitor Make/Model: Inlet flow (sccr Last cal. Date: Zero/Bkg	n): 7	8 February	29	Serial No: Full Scale Rang Old Correction	ge ppm:	0.1			
Span Coef	1.	06	-						
Calibrator			-						
М	[ake/Model:	GAS D R&R M CAL0	IFC 201	H ₂ S Concentra	AMU # : ation PPM:	169 20.	98 43		
С	alibrator Flo	W	Calculated	Calculated Indicated			% Difference		
	(sccm)		Conc.	Concentr		VS			
Air	Gas	Total	(ppm)	(ppm)	Audit Gas	Limits		
4976	0.0	4976	0.0000	0.000					
4995	18.5	5013	0.0752	0.076		1%	± 10%		
4996	9.1	5005	0.0372	0.038		1%	± 10%		
4996	4.6	5001	0.0189	0.019		1%	± 10%		
Linear Regression Analysis:Absolute Average Percent Difference 1% $y=mx+b$ (where $x=calculated$ concentration, $y=indicated$ concentration)LIMITSCorrelation Coeff.= 1.0000 ≥ 0.995 m (Slope)= 1.0135 $0.85-1.15$ b (Intercept as % of full scale)= 0.2839 $\pm 3\%$ F.S.									
Remarks:									

		N	on M	etha	ne	Ana	lyzei				
		Date:	March	8. 2016			Perfo			2015 - 157A Beaton / Al	
Station		Duite.		-, _0.0	-		1 0110		0.104	_ = = = = = = = = = = = = = = = = = = =	
		P Reno	Location: PRAMP		Reno Temp.	21	Operator: .8 C	BP:	Ma	xxam 700 mmHg	
Monito	r:	Ma	ke/Model:	Tł	nermo 55	5i	S	erial No.	1	505664392	2
		Inlet flo	ow (sccm):				_	CH ₄ R	ange ppm:	20)
		Last	cal. Date:	Febru	iary 11, 2	2016	N		ange ppm: ange ppm:)
	Old C	Correction 1	Factor:	CH ₄ :	0.9	999		шек	ange ppm.	· <u> </u>	,
				Non CH ₄ :	1.0	004	-				
					1.0		-				
Calibra	tion Metl	hod:		Gas Dil	ution						
Calibra	tor:	Make	Model	R&I	R MFC 2	01	_	AMU#		1698	
HC o	HC cylinder # FF27932 CH ₄ conc. (ppm) 500.0 CH ₄ Equiv (Propane only) (ppm) 550.0										
			I	Propane cor	nc. (ppm)	200.0	-	Tot	al CH ₄ Eq	uiv. (ppm)	1050.0
	Calibrato	r		Tala Cona		Indica	ted Concer	tration	0% D;ff~	rance us A	dit Gas
	Flows	1					ted Concentration% Difference vs Audit GNon CH4THCLimit ± 10%				uit Gas
Air	Gas	Total	(ppm)	(ppm)	(ppm)	(ppm)		(ppm)	CH_4	Non CH ₄	THC
2986	0.0	2986	0.00	0.00	0.00	0.00	0.00	0.00	$>\!$	\geq	\succ
2989	80.6	3070	13.13	14.45	27.58	12.79	14.00	26.79	-3%	-3%	-3%
3016	40.4	3056	6.62	7.28	13.89 7.03	6.56 3.37	7.08	13.68	-1% 1%	-3%	-2%
3037	20.5	3057	3.35	3.68			3.65 e Percent D	7.02 ifference	1%	-1% 2%	0% 2%
Linear	Regressi	ion Analy	sis:			-		-	ntration, y=i	indicated cond	centration)
				CH₄		Non CH	٨	тнс		LIMITS	
	Correlatio	on Coeff.=		0.9999		1.0000	-	1.0000		≥ 0.995	
	n	n (Slope)=		0.9720	-	0.9673	-	0.9697		0.85-1.15	
b (Int	ercept as 9	% of FS)=		0.3373	-	0.1920	-	0.2844		± 3% F.S.	i i
Remark	(S:										

Station Performance Audit Summary

Company	/:	PRAMP			Facili	ity Name:		Ν	A		_
Approval No.	.:	NA			S	ite Name:	PF	RAM	Reno		-
Region	n:	Upper Peace				District:					_
Parameters au	idite	ed:									
H_2S		SO ₂	х	NO _X		NH ₃		O ₃			
CO		CH ₄	х	NonCH4	х	THC	х				
PM _{2.5}		PM_{10}		TSP		BTEX			nd Spe		Х
Wind Dir	X	Amb. Temp	X	Stn.Temp VWS	X	RH	X		ar Radia	tion	
Rainfall	tore	Precip monitored as j	or or		6	Other No	TRS	N/A	X		
An parame	ters	monitored as j			o	10	1	<u>\/A</u> _	^		
GENERAL	Ľ,								YES	NO	N/A
	Ha	as the location re	emain	ed unchange	d fron	n previous aud	lit?				Х
	Is	site secure?							х		
	A	re station operati	ng co	nditions ade	quate	?			х		
DATA ACQUIS		ΩN									
DAIAACQUI		re strip charts in	use?							х	1
		a telemetry syste		· data acquis	ition i	n 1160?			х	X	
	15	a telefileti y syst		uata acquisi		li use :			^		11
SYSTEM COMPONENTS											
	Is a glass sampling manifold installed?										
	Is	Is sampling manifold clean?									
	Is	a manifold trap	in pla	ce?					Х		
	A	re spare manifol	d port	s capped					Х		
	Is	manifold oriente	ed so i	it is not exac	tly ho	rizontal?			х		
	A	re manifold port	s situa	ited to prever	nt wat	er entering mo	onitors	?	х		
		manifold pump		-		-			х		
		o sample lines es		-		-			х		
		re monitor samp							x		1
		re sampling lines			u to 1	annoid.			x		
						22					1
		re monitors prop					10		X		1
		re monitors prop	-			m or scrubbed	12		X		
	Ai	re zero and span	syste	ms operation	al?				х		
WIND EQUIP											
	Is	wind sensor pro	perly	oriented?					Х		
	D	oes wind equipn	nent a	ppear to be f	unctic	ning properly	?		х		
	Da	ate of last calibra	ation.			Date:	Septe	mber	r 15, 20	15	
COMMENTS:		Wind Sp	eed ra	nge incorrec	t on w	vind system ca	l form	, cori	ect in D	DAS	
AUDITOR	l:	Shea Beaton	/ Al (Clark		DATE:		Mar	ch 8, 20	016	
			а	emer	a .	brg					

	STATIC) AUI	DIT							
			File No. <u>2015 152</u>	A/154A						
Date: March 8,	<u>2016</u> I	Performed by:	Shea Beaton / Al C	Clark						
Station Name: Three Cree Facility/Zone: PRAM Temp:	1P	Operator:	Peace River - Three Creeks Maxxam 700 mmHg							
Location Latitude N 56°, 16', 26.9" Longitude W 116°, 58', 52.8" Elevation 615m Status of Site Documentation Incomplete; needs update										
Manifold Material Glass Manifold Condition Dusty - Cracked at Tee										
Meteorological Wind Speed Direction	Observed 202° 9.1 km/H		Audit Value SSW 5-10 Km/H							
Station Temperature	23.1 C		23.7 C							
Relative Humidity	92.4%		86.6%							
Ambient Temperature	-2.7		-2.1							
Solar Radiation	NA		NA							
Precipitation	NA		NA							
Remarks: - Site documents need upo - Glass manifold tee has a out.				knock-						

		SO ₂	ANALY	ZER A	UDIT	
					File No. 2015	- 152A
					2010	102/1
Date:	March	8, 2016	_ Per	formed by:	Shea Beaton / Al	Clark
Station						
Name:	Three C	reeks 842	-	Location: Pe	eace River - Three Creeks	-
Facility/Zone:	PR	AMP	_	Operator:	Maxxam	_
				etric Press.	700 mmHg	_
Monitor						
Make/Model:		API	<u>100A</u> S	erial No:	1502	_
Inlet flow (scci	n):			Full Scale Range		-
Last cal. Date:		February	<u>/1/,2016</u> 0	Id Correction I	Factor: 1.001	-
Zero/Bkg	48	3.0				
Span Coef	1.0	2008	-			
Calibrato			-			
		040 5				
Calibrat	ion Method:	GAS D	ILUTION		AMU # : 16	08
10.	Cylinder # :		16720	SO ₂ Concentrat	AMU # : 16 ion PPM: 98	
	-)			~ ~ 2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
C	alibrator Flo	1117	Calculated	Indicate	d % Dif	ference
C	(sccm)	,,,,	Conc.	Concentra		
Air	Gas	Total	(ppm)	(ppm)	Audit Gas	Limits
4988	0.0	4988	0.000	0.000		
5005	20.0	5025	0.391	0.386		± 10%
4991	9.8	5001	0.193	0.190		± 10%
5000	4.9	5005	0.096	0.093		± 10%
Linear Regre	esion Ana	lveie	Absolute Av	erage Percent I	Difference 2%	
Linear Regre	551011 Alla	19515.	v-mx+b (who	are v-calculated (concentration, y=indicated	concentration)
					AITS	
	Correla	tion Coeff.=	1.0000		.995	
		m (Slope)=	0.9880	0.8	5-1.15	
b (Inter	cept as % o	f full scale)=	-0.1727	± 3	% F.S.	
Remarks:						

		TRS	ANAL	YZER AL	JDIT			
]	File No. 2015	5 - 153		
Date:	March	8, 2016	P	erformed by:	Shea Beaton / Al	Clark		
Station								
Name:			-	Location: Peac	ce River - Three Creeks	_		
Facility/Zone:	PR	AMP	_	Operator:	Maxxam	_		
				metric Press.	700 mmHg	_		
Monitor								
Make/Model:				Serial No:		_		
Inlet flow (scc	,				opm: 0.1	_		
Last cal. Date	:	17-F	eb-16	Old Correction Fa	ctor: <u>1.000</u>	_		
Zero/Bkg	; 8	8.4						
Span Coef	0.	996						
Calibrato	r							
Calibra	tion Method [.]	GAS D						
N	Make/Model:	R&R M	IFC 201	A	MU # : 16	698		
	Cylinder # :	CALC	15106	H ₂ S Concentratio	AMU # : 16 on PPM: 20).43		
(Calibrator Flo)W	Calculated	Indicated	% Dif	% Difference		
	(sccm)		Conc.	Concentratio				
Air	Gas	Total	(ppm)	(ppm)	Audit Gas	Limits		
4988 5007	0.0 18.5	4988 5025	0.0000	0.0001 0.0742	-1%	± 10%		
4992	9.0	5025	0.0750	0.0368	-1%	$\pm 10\%$ $\pm 10\%$		
5000	4.6	5005	0.0000	0.0181	-4%	± 10%		
				verage Percent Dif				
Linear Regr	ession Ana	lysis:						
			y=mx+b (wl	here x=calculated cor	ncentration, y=indicated	concentration)		
	Correla	ation Coeff.=	1.0000	≥ 0.9	-			
		m (Slope)=	0.9905	0.85	-1.15			
b (Inte	ercept as % o	f full scale)=	-0.0576	± 3%	6 F.S.			
Remarks:								

		N	on M	etha	ne	Ana	lyzei			045 454	N
		Date:	March	8, 2016			Perfo			2015 - 154/ Beaton / Al	
Station Name: Facilit		eeks 842	Location: PRAMP	Peace Riv	ver - Thre Temp.	e Creeks 21	Operator: .1 C	BP:	Ма	ixxam 700 mmHg	
Monito		Inlet flo	ow (sccm): t cal. Date:	Febru	ary 17, 2 1.0 0.9	2016 001 999	-	CH ₄ R on CH ₄ R	ange ppm	: 20))
Calibra		nod: Make/ FF2		Gas Dilution R&R MFC 201 CH ₄ conc. (ppm) 500.0			AMU# 1698 CH ₄ Equiv (Propane only) (ppm) 550.0				
				Propane cor			-			quiv. (ppm)	
	Calibrato	r		Calc. Conc.			ted Concen		% Diffe	erence vs Au	ıdit Gas
Air	Flows Gas	Total	CH ₄ (ppm)	Non CH ₄ (ppm)	THC (ppm)		Non CH ₄ (ppm)	THC (ppm)	CH_4	Limit \pm 10% Non CH ₄	THC
2993 2992 3019	0.0 81.1 40.0	2993 3073 3059	0.00 13.20 6.54	0.00 14.52 7.20	0.00 27.72 13.74	0.00 12.78 6.54	0.00 13.97 7.08	0.01 26.75 13.63	-3% 0%	-4% -2%	-4% -1%
3032	20.2	3052	3.30	3.63	6.94	3.31	3.60 e Percent D	6.92	0% 1%	-1% 2%	0% 2%
Linear	Regressi	on Analy	sis:		y=r	mx+b (wh	ere x=calcula	ated conce	ntration, y=	indicated con	centration)
	Correlation Coeff.= 0 m (Slope)= 0			CH ₄ 0.9998 0.9670 0.4276		Non CH 0.9999 0.9608 0.3612	4 - -	THC 0.9999 0.9634 0.4244		LIMITS ≥ 0.995 0.85-1.15 ± 3% F.S.	
Remark	(S:										

Station Performance Audit Summary

Company	y:	PRAMP			Facili	ity Name:	Tł	nree Creeks				
Approval No	.:	NA			S	ite Name:		842b				
Region		Lower Peace				District:						
Parameters au	idite	ed:										
H ₂ S		SO_2	Х	NOX		NH ₃		O ₃				
CO		CH ₄	Х	NonCH4	Х	THC	Х	Ethylene				
PM _{2.5}		PM ₁₀		TSP		BTEX		Wind Spe	ed	Х		
Wind Dir	Х	Amb. Temp	Х	Stn.Temp	Х	RH	Х	Solar Radiat	ion			
Rainfall		Precip		VWS		Other	TRS					
All parame	eters	monitored as j	per aj	pproval: Ye	s	No	1	N/AX				
GENERA								YES	NO	N/A		
	H	as the location re	emain	ed unchange	d fron	n previous aud	it?	х				
	Is	site secure?						х				
	A	re station operati	ing co	onditions ade	quate	?		х				
DATA ACQUI								·				
Are strip charts in use? x Is a telemetry system for data acquisition in use? x												
	Is	a telemetry syste	em fo	r data acquis	ition i	n use?		х				
SYSTEM COM					10							
		a glass sampling			d?			Х				
		sampling manife							x			
	Is	a manifold trap	in pla	ice?				х				
	A	re spare manifol	d port	s capped				х				
	Is	manifold oriente	ed so	it is not exac	tly ho	rizontal?		х				
	A	re manifold port	s situa	ated to preve	nt wat	er entering mo	onitors	? x				
		manifold pump		-		-		х				
		o sample lines ex		-		-		x				
		re monitor samp						x				
		re sampling lines			a to 1	numora.						
						- 0		X				
		re monitors prop	-				0	X				
		re monitors prop	-			m or scrubbed	[?	Х				
	A	re zero and span	syste	ms operation	nal?			х				
WIND EQUIP.				oriente do								
		wind sensor pro			. ,.		0	X				
		oes wind equipn			unctic			х				
		ate of last calibra				Date:		uly 9, 2015				
COMMENTS:	_	Wind speed out										
	- Sampling manifold and inlet dirty - crack in glass TEE on sintered sealing surface											
	co	nnecting to wate	er kno	ock-out								
AUDITO	R:	Shea Beaton	/ A1 (Clark		DATE:		March 8, 20)16			

aemera.org

STA	TION AU	DIT
		File No. 2015 149A/151A
Date: March 8, 2016	Performed by:	Shea Beaton/Al Clark
Station	. .	
Name: Three Creeks 986b		Peace River Three Creeks
Facility/Zone: PRAMP		Maxxam
Temp: 23.3 C	Barometric Press:	702mmHg
Location Latitude N		
Longitude W Elevation		
	On Site - Incom	plete
Manifold MaterialGlassManifold ConditionDusty		
Meteorological		
Observed Wind Speed Direction 165deg / 5 K		Audit Value SSE / 5-10 Km/H
Station Temperature 24.3 C		22.0 C
Relative Humidity 82%		90%
Ambient Temperature -1.2		-2.7
Solar Radiation NA		NA
Precipitation NA		NA
Remarks: Ambient temperature Sensor reading 1.5 calibration. Station temperature sensor Site Documents need to be updated; pho Plan and cross section view as required	2.3 C higher than au otos showing previo	udit standard. us station installation and interior
	· · · · ·	

		SO ₂	ANAL	YZER A	UDIT		
					File No.	2015-1	149A
	Maria	0.0040		6 11			
	March	8, 2016	Pe	erformed by:	Shea Be	eaton / Al C	lark
Station	Three Cr	ooko 096h		Logotion, D	and Diver The	na Craalia	
	Three Cr		-	Location: Pe			
Facility/Zone:	PR/	AMP	-	Operator:	Maxxa	m	
	Temp.	23.3	Baror	metric Press.	702mm	Hg	
Monitor							
Make/Model:				Serial No:			
Inlet flow (scc				Full Scale Range			
Last cal. Date:		February	10, 2016	Old Correction F	factor:	1.000	
Zero/Bkg	6	5.4					
Span Coef	0.9	907	-				
Calibrato							
		GAS D					
Calibrat	lon Meulou. Iake/Model·	R&R M	IEC 201		AMU#·	169	98
1	Cylinder # :	CALO	16720	SO ₂ Concentrat	ion PPM:	98.5	57
	5			2			
(alibrator Flo	W	Calculated	Indicate	d	% Diffe	erence
_	(sccm)		Conc.	Concentra		VS	
Air	Gas	Total	(ppm)	(ppm)	A	Audit Gas	Limits
5009	0.0	5009	0.0000	0.001			
5036	19.9	5056	0.3880	0.393		1%	± 10%
5009	9.8	5019	0.1923	0.193		0%	± 10%
5008	4.9	5013	0.0956	0.095 verage Percent D		-2% 0%	± 10%
Linear Regre	ession Ana	lvsis:	Absolute A	verage Percent L		0%	
		iyele.	y=mx+b (wh	nere x=calculated c	concentration, y	/=indicated c	oncentration)
			- '		NITS		,
	Correla	tion Coeff.=		≥ 0	.995		
		m (Slope)=			5-1.15		
b (Inte	rcept as % o	f full scale)=	-0.0965	± 3	% F.S.		
Demortes							
Remarks:							

	TRS ANALYZER AUDIT											
				File No.	2015-	150A						
Data	Moroh	9 2016	Da			_						
	March	8, 2016	- Pe	erformed by: Shea	Beaton / Al							
Station Name:	Three Cr	eeks 986b		Location: Peace River	Three Creeke							
			-									
Facility/Zone:	PR/	AMP	-	Operator: Max	kxam							
	Temp.23.3Barometric Press.702											
Monitor												
Make/Model:				Serial No: 13140								
Inlet flow (scc				Full Scale Range ppm:								
Last cal. Date:		February	23, 2016	Old Correction Factor:	1.001							
Zero/Bkg	9	.5										
	0.9		•									
Calibrato			-									
		GAS D										
N	/ake/Model:		IFC 201	AMU # :	169	98						
	Cylinder # :	CALO	15106	AMU # : H ₂ S Concentration PPM:	20.	43						
	•			_								
	Calibrator Flo	W	Calculated	Indicated	% Diffe	erence						
	(sccm)		Conc.	Concentration	vs							
Air	Gas	Total	(ppm)	(ppm)	Audit Gas	Limits						
5009	0.0	5009	0.0000	-0.0001								
5038	18.4	5056	0.0744	0.0726	-2%	± 10%						
5010	9.0	5019	0.0368	0.0349	-5%	± 10%						
5008	4.6	5013	0.0187	0.0178	-4%	± 10%						
Linear Regre	ssion Ana	lveie	Absolute A	verage Percent Difference	4%							
Elliear Negro		19515.	v=mx+b (wh	ere x=calculated concentration	on. v=indicated c	concentration)						
			,	LIMITS		,						
	Correla	tion Coeff.=	0.9999	≥ 0.995								
		m (Slope)=	0.9776	0.85-1.15								
b (Inte	rcept as % o	f full scale)=	-0.4474	± 3% F.S.								
Domortoo												
Remarks:												

		N	on M	etha	ne	Ana	lyzei				
								File No.		2015-151A	<u> </u>
		Date:	March	8, 2016	-		Perfo	rmed by:	Shea	Beaton / Al	Clark
Station Name: Facilit		eeks 986b	Location: PRAMP	Peace Riv	ver - Thre Temp.	e Creeks 2	Operator: 3.3	BP:	Ма	xxam 701mmHg	
Monito	r:	Ma	ke/Model:	Tł	nermo 55	5i	S	erial No	1	022143392	2
	•		ow (sccm):				-		ange ppm		
			cal. Date:		ary 10, 2	2016	N	on CH ₄ R	ange ppm	: 20)
							_	THC R	ange ppm	: 40)
	Old C	orrection	Factor:	CH ₄ :	1.0	001	_				
				Non CH ₄ :			-				
THC: 1.001											
0	(l-									
	tion Metl		Model	Gas Dil		01	-			1698	
Calibrator: Make/Model R&R MFC 201 AMU# 1698											
HC cylinder # FF27932 CH_4 conc. (ppm) 500.0 CH_4 Equiv (Propane only) (ppm) 550.0											
			I	Propane cor	nc. (ppm)	200.0	-	Tot	tal CH ₄ Eo	quiv. (ppm)	1050.0
	Calibrato	r		Calc. Conc.	1		ated Concentration % Difference vs Audit Gas				
A in	Flows	Total	CH ₄	Non CH_4	THC		Non CH_4	THC	СЦ	Limit \pm 10% Non CH ₄	THC
Air	Gas	Total	(ppm)	(ppm)	(ppm) 0.00	(ppm) 0.00	(ppm) 0.00	(ppm)	<u> </u>		
3030 3030	0.0 80.0	3030 3110	0.00	0.00 14.15	27.02	12.52	13.68	0.01 26.22	-3%	-3%	-3%
3024	40.0	3064	6.53	7.18	13.71	6.40	6.94	13.33	-2%	-3%	-3%
3036	20.2	3056	3.31	3.64	6.95	3.27	3.51	6.75	-1%	-4%	-3%
					Absolut	e Average	e Percent D	ifference	2%	3%	3%
Linear	Regressi	on Analy	sis:		y=r	nx+b (wh	ere x=calcula	ated conce	ntration, y=	indicated cond	centration)
				CH₄		Non CH	4	тнс		LIMITS	
	Correlatio	on Coeff.=		1.0000		1.0000	-	1.0000		≥ 0.995	
	n	n (Slope)=		0.9724	-	0.9669	-	0.9703		0.85-1.15	
b (Int	ercept as 9	% of FS)=		0.1410	-	-0.0235	_	0.0290		± 3% F.S.	
Remark	(S:										
	•										

Station Performance Audit Summary

Compan	y:	PRAMP			Facil	ity Name:	TI	nree Cr	reeks		-
Approval No	o.:	NA			S	ite Name:		986t	0		-
Regio	n•	Lower Peace				District:					
Parameters a						District.					-
H ₂ S		SO ₂	Х	NO _X		NH ₃		O ₃		T	
CO		CH ₄	Х	NonCH4	Х	THC	Х	Ethy	lene		
PM _{2.5}		PM ₁₀		TSP		BTEX		Wind	d Spe	ed	Х
Wind Dir	X	Amb. Temp	Х	Stn.Temp	Х	RH	X		Radiat	tion	
Rainfall		Precip		VWS		Other	TRS		V		
All parame	eters	monitored as j	per a	pproval: Ye	s	No		N/A	<u>X</u>		
GENERA	7								YES	NO	N/A
OENERA		as the location re	main	ed unchange	d fror	n previous auc	lit?	Г		X	IN/A
		site secure?	/111a111	eu unenange	u non	ii previous auc			Х	Λ	
				nditions ada	~~~~	2		-			
	A	re station operati	ing co	nutions ade	quate	<u>'</u>		L	Х		
DATA ACQUISITION											
Are strip charts in use?											
Is a telemetry system for data acquisition in use?											
SYSTEM CON	1001	NENTS									
SISIENICON	-	a glass sampling	t man	ifold installe	42			Г	х		
		sampling manife			u .			-		Х	
								-	V	~	
		a manifold trap	-					_	X		
		re spare manifol	-					_	Х		
		manifold oriente			-			_	Х		
		re manifold port		-		-	onitors	?	Х		
		manifold pump		-		-			Х		
	D	o sample lines ex	ktend	at least 3/4"i	nto m	anifold?			Х		
	A	re monitor samp	ling li	nes connecte	ed to r	nanifold?			Х		
	Α	re sampling lines	s clea	n?					Х		
	Α	re monitors prop	erly r	nounted and	secur	e?			Х		
	Α	re monitors prop	erly e	xhausted fro	m roo	m or scrubbed	1?		Х		
	А	re zero and span	syste	ms operation	al?				Х		
WIND EQUIP	MEN	1 T									
WIND EQUIF		wind sensor pro	norly	oriented?				Г	Х		
							9	-			
		oes wind equipn		ppear to be f	uncuc			L	X		
COMMENTS		ate of last calibra				Date:	J	une 9, 2	2015		
COMMENTS:		Sampling manif						-1-1			
	_	Tubing behind i	nstru	nent rack me	essy; r	ecommena tid	ying ti	ioing.			
AUDITO	R:	Shea Beaton	/ A1 (Clark		DATE:		March	n 8, 20)16	

Shell Canada Limited 400 – 4th Avenue S.W. P.O. Box 100, Station M Calgary, Alberta, T2P 2H5 Tel: (403) 691-3111 Internet <u>www.shell.ca</u>

April 15, 2016

Alberta Environmental Monitoring, Evaluation, and Reporting Agency Main Floor Bldg 3 McIntyre Center, 4946 – 89th Street Edmonton, AB, T6E 5K1

Attention:Shea Beaton (Email: shea.beaton@aemera.org)Monitoring Systems Auditor

Re: AEMERA Audit of the Peace River Area Monitoring Program (PRAMP) Ambient Air Monitoring Stations

The Alberta Environmental Monitoring, Evaluation, and Reporting Agency (AEMERA) conducted an audit on the Peace River Area Monitoring Program (PRAMP) ambient air monitoring stations on March 8, 2016. This audit included three community-based continuous air monitors (986b, 842b, and Reno). Although AEMERA was satisfied that the instruments in the stations were operating properly and considers the audit closed, there were a number of audit finding recommendations for improvement put forward by AEMERA.

The Peace River multi-industry Air Quality Working Group (AQWG; which includes the local industry operators on PRAMP who manage the monitoring services contractor) evaluated the AEMERA audit finding recommendations. Table 1 below provides a summary of the AEMERA audit findings, as well as the actions that are being taken to address each recommendation. Expected completion dates to close off each action are also given.

Station	AEMERA Audit Finding Recommendation	Response / Action	Expected Completion Date
986b	The station site documents were found to be incomplete and require updating; pursuant to AMD Chapter 3 sections SS 4- D(b) and SS 4-D(c) both a plan view sketch and a cross sectional sketch must be added to the site documents and available at the station.	The necessary data will be gathered by Maxxam Analytics during the next scheduled site visit (currently set for April 19), and then the relevant sections of the site documents will be updated. The station site documents will be physically replaced during the Maxxam Analytics May site visit.	End of May, 2016
986b	The photos and instrument list need to be updated; these items have not been updated since the new shelter was put in place.	The necessary data will be gathered during the next scheduled site visit (currently set for April 19), and then the relevant sections of the site documents will be updated. The	End of May, 2016

Table 1: Summary of Actions to Address AEMERA Audit Finding Recommendations

Station	AEMERA Audit Finding Recommendation	Response / Action	Expected Completion Date
		station site documents will be physically replaced during the Maxxam Analytics May site visit.	
986b	The ambient temperature sensor was reading 1.5°C higher than the audit standard; it is recommended that the ambient temperature/RH sensor be serviced and calibrated.	During the next scheduled site visit (currently set for April 19), the temperature sensor will be removed for service/calibration and replaced with an alternate unit.	End of April, 2016
986b	The station temperature sensor was reading 2.3°C higher than the audit standard; correcting this issue is regarded as an opportunity for improvement.	The read-out was corrected by Maxxam Analytics based on this audit finding.	March 21, 2016 (Complete)
986b	The sample manifold was observed to be dusty and requires cleaning.	The manifold was cleaned by Maxxam Analytics, and will be routinely cleaned at subsequent visits.	March 21, 2016 (Complete)
842b	The station site documents were found to be incomplete and require updating; pursuant to AMD Chapter 3 sections SS 4- D(b) and SS 4-D(c) both a plan view sketch and a cross sectional sketch must be added to the site documents and available at the station.	The necessary data will be gathered by Maxxam Analytics during the next scheduled site visit (currently set for April 20), and then the relevant sections of the site documents will be updated. The station site documents will be physically replaced during the Maxxam Analytics May site visit.	End of May, 2016
842b	The photos and instrument list needs to be updated.	The necessary data will be gathered during the next scheduled site visit (currently set for April 20), and then the relevant sections of the site documents will be updated. The station site documents will be physically replaced during the Maxxam Analytics May site visit.	End of May, 2016
842b	The glass TEE installed in the manifold inlet system has a crack on the sintered sealing surface connecting the water knock-out to the manifold and inlet pipe. This crack does not appear to be compromising the integrity of the glass manifold inlet system but the TEE should be repaired or replaced to prevent the possibility of further damage to the manifold inlet system.		End of May, 2016
842b	The manifold was observed to be dirty and requires cleaning.	The manifold was cleaned by Maxxam Analytics, and will be routinely cleaned at subsequent visits.	March 16, 2016 (Complete)
Reno	The station site documents were found to be incomplete and require updating; pursuant to AMD Chapter 3 sections SS 4- D(b) and SS 4-D(c) both a plan view sketch and a cross sectional sketch must be added to the site documents and available at the station.	This station ceased operation on March 31, 2016 and will be removed in April. No action required.	March 31, 2016 (Complete)

Station	AEMERA Audit Finding Recommendation	Response / Action	Expected Completion Date
Reno	A site description (SS 4-B (j)) and an area map (SS 4-D (a)) are also required.	This station ceased operation on March 31, 2016 and will be removed in April. No action required.	March 31, 2016 (Complete)
Reno	The station temperature sensor is reading 2°C lower than the audit standard – correcting this issue is regarded as an opportunity for improvement	The read-out was corrected by Maxxam Analytics based on this finding.	March 21, 2016 (Complete)
All	As an ambient air monitoring network PRAMP is required to have current network site documentation that meets the requirements of AMD Chapter 3 SS 4-C. This document will need to be completed and made available to AEMERA's audit team for inspection.	This audit recommendation has been put on the agenda for the next PRAMP Committee meeting, set for April 18, 2016. The PRAMP Committee has an existing Monitoring Plan Report, which may assist in satisfying this request for site documentation and network details. However, this audit recommendation shall be addressed via separate cover from the PRAMP Committee following the April 18, 2016 meeting.	End of May, 2016 (via PRAMP Committee)

We trust that the above information meets your current requirements. If you have any questions, please do not hesitate to contact PRAMP (Karla Reesor; 403-807-2995; <u>karlareesor@movingfwd.ca</u>) or the AQWG (Allison Fisher; 403-691-4536; <u>allison.fisher@shell.com</u>)

Sincerely,

Allison Fisher, B.Sc. Hons., M.A.Sc. Peace River Industry Air Quality Working Group Chair Regional Specialist – Air, Noise, and Environmental Reporting Shell Canada Limited

cc: Karla Reesor – PRAMP Facilitator Anthony Traverse – Baytex Stephanie Nielson – Murphy Kenda Friesen - Pennwest Robyn Kutz Semeniuk, Kate Humphreys – Shell Canada Bob Myrick – AEMERA Michael Zelensky, Wally Qiu – AER Yan Liu – AEP Trina Whitsett - Maxxam Analytics

APPENDIX B Triggered Sample Results

ABLE B-1 Triggered Sample	Results at	all PRAMP S	tations (842	, 986, and R	eno) for the	year of 201	6					
Station		986	986	986	986	986	986	986	986	986	Reno	Reno
Sampled Date (MM/DD/	YYYY)	2016/01/02	2016/01/05	2016/01/12	2016/01/13	2016/01/24	2016/03/31	2016/05/23	2016/06/07	2016/10/05	2016/01/03	2016/01/2
Sampled Time		11:45	18:30	18:55	16:55	15:50	08:55	02:25	22:25	18:40	23:35	00:10
Parameter	Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
1-Butene	ppmv	< 0.13	< 0.14	< 0.13	< 0.12	< 0.13	< 0.12	< 0.13	< 0.12	< 0.18	< 0.12	< 0.12
Acetylene	ppmv	< 0.3	< 0.3	< 0.3	< 0.2	< 0.3	< 0.2	< 0.3	< 0.2	< 0.4	< 0.2	< 0.2
cis-2-Butene	ppmv	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1
Ethane	ppmv	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1
Ethylacetylene	ppmv	< 0.08	< 0.08	< 0.08	< 0.07	< 0.08	< 0.07	< 0.08	< 0.07	< 0.11	< 0.07	< 0.07
Ethylene	ppmv	< 0.3	< 0.3	< 0.3	< 0.2	< 0.3	< 0.2	< 0.3	< 0.2	< 0.4	< 0.2	< 0.2
Isobutane	ppmv	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1
Isobutylene	ppmv	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1
Methane	ppmv	3.1	3.2	2.1	2.3	2.0	2.1	2.1	2.4	2.2	3.7	2.5
n-Butane	ppmv	< 0.3	< 0.3	< 0.3	< 0.2	< 0.3	< 0.2	< 0.3	< 0.2	< 0.4	< 0.2	< 0.2
n-Propane	ppmv	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	0.37	< 0.08	< 0.13	< 0.09	< 0.09
Propylene	ppmv	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1
Propyne	ppmv	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1
trans-2-Butene	ppmv	< 0.11	< 0.12	< 0.12	< 0.11	< 0.12	< 0.11	< 0.12	< 0.10	< 0.16	< 0.11	< 0.11
2,5-Dimethylthiophene	ppbv	md	md	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.3	< 1.6	< 0.4	< 0.4
2-Ethylthiophene	ppbv	md	md	< 0.3	< 0.2	< 0.3	< 0.2	< 0.3	< 0.2	< 1.8	< 0.2	< 0.2
2-Methylthiophene	ppbv	md	md	< 0.3	< 0.2	< 0.3	< 0.2	< 0.3	< 0.2	< 1.4	< 0.2	< 0.2
3-Methylthiophene	ppbv	md	md	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.3	< 0.9	< 0.4	< 0.4
Butyl mercaptan	ppbv	md	md	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.3	< 1.4	< 0.4	< 0.4
Carbon disulphide	ppbv	md	md	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	0.4	< 1.1	< 0.4	< 0.4
Carbonyl sulphide	ppbv	md	md	1.6	0.9	1.2	5.6	1.8	3.5	8.1	< 0.2	< 0.2
Dimethyl disulphide	ppbv	md	md	< 0.3	< 0.2	< 0.3	< 0.2	< 0.3	< 0.2	< 1.4	< 0.2	< 0.2
Dimethyl sulphide	ppbv	md	md	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.3	< 1.3	< 0.4	< 0.4
Ethyl mercaptan	ppbv	md	md	< 0.3	< 0.2	< 0.3	< 0.2	< 0.3	< 0.2	< 1.1	< 0.2	< 0.2
Ethyl sulphide	ppbv	md	md	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.3	< 1.6	< 0.4	< 0.4
Hydrogen sulphide	ppbv	md	md	< 0.3	< 0.2	< 0.3	< 0.2	< 0.3	< 0.2	< 1.3	< 0.2	< 0.2
Isobutyl mercaptan	ppbv	md	md	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.3	< 1.4	< 0.4	< 0.4
Isopropyl mercaptan	ppbv	md	md	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 1.6	< 0.1	< 0.1
Methyl mercaptan	ppbv	md	md	< 0.3	< 0.2	< 0.3	< 0.2	< 0.3	< 0.2	< 1.6	< 0.2	< 0.2
Pentyl mercaptan	ppbv	md	md	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.3	< 3.6	< 0.4	< 0.4

APPENDIX B TRIGGERED SAMPLE RESULTS

Station	-	986	986	986	986	986	986	986	986	986	Reno	Reno
Sampled Date (MM/DD/	ΥΥΥΥ)	2016/01/02	2016/01/05	2016/01/12	2016/01/13	2016/01/24	2016/03/31	2016/05/23	2016/06/07	2016/10/05	2016/01/03	2016/01/24
Sampled Time		11:45	18:30	18:55	16:55	15:50	08:55	02:25	22:25	18:40	23:35	00:10
Parameter	Unit	Result										
Propyl mercaptan	ppbv	md	md	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.3	< 1.8	< 0.4	< 0.4
tert-Butyl mercaptan	ppbv	md	md	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.3	< 1.6	< 0.4	< 0.4
Thiophene	ppbv	md	md	< 0.3	< 0.2	< 0.3	< 0.2	< 0.3	< 0.2	< 1.3	< 0.2	< 0.2
1,1,1-Trichloroethane	ppbv	< 0.03	< 0.03	< 0.03	0.08	< 0.03	< 0.02	< 0.03	< 0.02	< 0.04	< 0.02	< 0.02
1,1,2,2-Tetrachloroethane	ppbv	< 0.03	< 0.03	< 0.03	0.08	< 0.03	< 0.02	< 0.03	< 0.02	< 0.04	< 0.02	< 0.02
1,1,2-Trichloroethane	ppbv	< 0.03	< 0.03	< 0.03	0.08	< 0.03	< 0.02	< 0.03	< 0.02	< 0.04	< 0.02	< 0.02
1,1-Dichloroethane	ppbv	< 0.03	< 0.03	< 0.03	0.08	< 0.03	< 0.02	< 0.03	< 0.02	< 0.04	< 0.02	< 0.02
1,1-Dichloroethylene	ppbv	< 0.05	< 0.05	< 0.05	0.08	< 0.05	< 0.05	< 0.05	< 0.05	< 0.07	< 0.05	< 0.05
1,2,3-Trimethylbenzene	ppbv	< 0.06	< 0.07	< 0.07	< 0.06	< 0.06	< 0.06	< 0.06	0.09	< 0.09	< 0.06	< 0.06
1,2,4-Trichlorobenzene	ppbv	< 1.0	< 1.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.9	< 1.4	< 1.0	< 1.0
1,2,4-Trimethylbenzene	ppbv	< 0.04	< 0.04	< 0.04	0.09	< 0.04	< 0.04	0.05	0.07	0.06	0.07	0.08
1,2-Dibromoethane	ppbv	< 0.03	< 0.03	< 0.03	0.08	< 0.03	< 0.02	< 0.03	< 0.02	< 0.04	< 0.02	< 0.02
1,2-Dichlorobenzene	ppbv	< 0.04	< 0.04	< 0.04	0.06	< 0.04	< 0.04	< 0.04	< 0.03	< 0.05	< 0.04	< 0.04
1,2-Dichloroethane	ppbv	0.03	0.03	0.02	0.09	< 0.01	0.02	0.03	0.01	0.03	0.03	< 0.01
1,2-Dichloropropane	ppbv	0.02	0.02	0.02	0.10	0.02	< 0.01	0.01	< 0.01	< 0.02	0.02	0.02
1,3,5-Trimethylbenzene	ppbv	< 0.03	< 0.03	< 0.03	0.09	< 0.03	< 0.02	0.04	< 0.02	< 0.04	0.03	< 0.02
1,3-Butadiene	ppbv	< 0.03	< 0.03	< 0.03	< 0.02	< 0.03	< 0.02	0.08	0.04	< 0.04	< 0.02	< 0.02
1,3-Dichlorobenzene	ppbv	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.3	< 0.5	< 0.4	< 0.4
1,4-Dichlorobenzene	ppbv	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.7	< 0.5	< 0.5
1,4-Dioxane	ppbv	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.7	< 0.5	< 0.5
1-Butene	ppbv	0.42	0.17	0.35	0.67	0.27	0.24	0.43	0.32	0.55	2.07	0.16
1-Hexene	ppbv	< 0.03	< 0.03	< 0.03	0.39	< 0.03	< 0.02	0.03	0.03	< 0.04	0.20	< 0.02
1-Pentene	ppbv	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	0.03	0.02	0.24	< 0.01
2,2,4-Trimethylpentane	ppbv	0.04	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01
2,2-Dimethylbutane	ppbv	0.02	0.11	< 0.01	< 0.01	0.02	< 0.01	0.50	0.28	0.15	0.06	0.03
2,3,4-Trimethylpentane	ppbv	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	0.02	< 0.01
2,3-Dimethylbutane	ppbv	0.05	0.19	< 0.03	0.08	0.03	< 0.02	1.05	0.66	0.38	0.19	0.08
2,3-Dimethylpentane	ppbv	< 0.03	0.08	< 0.03	0.12	0.03	< 0.02	0.50	0.43	0.06	0.07	0.05
2,4-Dimethylpentane	ppbv	0.02	0.11	0.02	0.06	0.03	< 0.01	0.26	0.16	0.03	0.07	0.04
2-Methylheptane	ppbv	0.01	0.10	< 0.01	0.08	0.02	< 0.01	0.41	0.32	< 0.02	0.04	0.03
2-Methylhexane	ppbv	0.04	0.26	0.02	0.56	0.08	0.06	1.33	0.99	0.13	0.10	0.12
2-Methylpentane	ppbv	0.23	1.36	0.12	0.51	0.24	< 0.01	6.14	4.40	1.93	0.52	0.40
3-Methylheptane	ppbv	< 0.03	0.05	< 0.03	0.07	< 0.03	< 0.02	0.20	0.14	< 0.04	0.03	< 0.02
3-Methylhexane	ppbv	0.06	0.28	0.04	0.74	0.08	0.08	1.26	0.94	0.09	0.20	0.15

Station		986	986	986	986	986	986	986	986	986	Reno	Reno
Sampled Date (MM/DD/	ΥΥΥΥ)	2016/01/02	2016/01/05	2016/01/12	2016/01/13	2016/01/24	2016/03/31	2016/05/23	2016/06/07	2016/10/05	2016/01/03	2016/01/24
Sampled Time		11:45	18:30	18:55	16:55	15:50	08:55	02:25	22:25	18:40	23:35	00:10
Parameter	Unit	Result										
3-Methylpentane	ppbv	0.12	0.82	0.08	0.20	0.14	0.06	3.62	2.58	0.76	0.29	0.23
Acetone	ppbv	6.2	1.8	2.5	5.0	2.6	3.2	3.7	< 0.5	4.9	9.1	3.3
Acrolein	ppbv	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.3	< 0.5	< 0.4	< 0.4
Benzene	ppbv	0.26	0.66	0.45	0.47	0.32	0.05	5.47	5.03	0.93	3.25	0.47
Benzyl chloride	ppbv	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.7	< 0.5	< 0.5
Bromodichloromethane	ppbv	< 0.03	< 0.03	< 0.03	0.08	< 0.03	< 0.02	< 0.03	< 0.02	< 0.04	< 0.02	< 0.02
Bromoform	ppbv	< 0.03	< 0.03	< 0.03	0.06	< 0.03	< 0.02	< 0.03	< 0.02	< 0.04	< 0.02	< 0.02
Bromomethane	ppbv	0.02	0.02	< 0.01	0.09	0.01	< 0.01	< 0.01	< 0.01	< 0.02	0.02	< 0.01
Carbon disulfide	ppbv	< 0.01	< 0.01	0.04	0.13	0.13	0.04	0.08	0.59	0.05	< 0.01	0.03
Carbon tetrachloride	ppbv	0.10	0.11	0.12	0.19	0.12	0.11	0.11	0.09	0.12	0.11	0.12
Chlorobenzene	ppbv	< 0.03	< 0.03	< 0.03	0.08	< 0.03	< 0.02	< 0.03	< 0.02	< 0.04	< 0.02	< 0.02
Chloroethane	ppbv	< 0.03	< 0.03	< 0.03	0.10	< 0.03	< 0.02	< 0.03	< 0.02	< 0.04	< 0.02	< 0.02
Chloroform	ppbv	0.03	0.03	< 0.03	0.10	0.03	< 0.02	< 0.03	< 0.02	< 0.04	0.03	0.03
Chloromethane	ppbv	0.97	0.79	0.88	0.97	0.74	0.94	0.67	0.56	0.41	0.95	0.72
cis-1,2-Dichloroethene	ppbv	< 0.01	< 0.01	< 0.01	0.07	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01
cis-1,3-Dichloropropene	ppbv	< 0.05	< 0.05	< 0.05	0.07	< 0.05	< 0.05	< 0.05	< 0.05	< 0.07	< 0.05	< 0.05
cis-2-Butene	ppbv	0.05	< 0.03	< 0.03	0.03	< 0.03	< 0.02	< 0.03	< 0.02	< 0.04	0.42	0.03
cis-2-Pentene	ppbv	< 0.03	< 0.03	< 0.03	< 0.02	< 0.03	< 0.02	< 0.03	< 0.02	< 0.04	0.07	< 0.02
Cyclohexane	ppbv	0.11	0.62	0.08	0.23	0.11	< 0.02	5.14	4.46	0.53	0.34	0.19
Cyclopentane	ppbv	0.06	0.28	0.03	0.07	0.05	0.01	3.16	2.05	31.2	0.15	0.08
Dibromochloromethane	ppbv	< 0.01	< 0.01	< 0.01	0.07	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01
Ethanol	ppbv	< 0.4	< 0.4	0.4	1.2	0.5	0.5	1.1	1.8	0.9	2.4	0.6
Ethyl acetate	ppbv	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.7	< 0.5	< 0.5
Ethylbenzene	ppbv	0.02	0.02	0.03	0.13	0.04	< 0.01	0.12	0.11	< 0.02	0.15	0.09
Freon-11	ppbv	0.38	0.38	0.34	0.41	0.33	0.35	0.32	0.25	0.33	0.35	0.33
Freon-113	ppbv	0.11	0.11	0.09	0.18	0.09	0.10	0.08	0.06	0.05	0.11	0.09
Freon-114	ppbv	0.03	0.03	0.03	0.11	0.03	0.03	0.03	< 0.02	< 0.04	0.03	0.03
Freon-12	ppbv	0.77	0.81	0.70	0.77	0.71	0.73	0.57	0.20	0.65	0.67	0.71
Hexachloro-1,3-butadiene	ppbv	< 0.64	< 0.68	< 0.66	< 0.62	< 0.65	< 0.62	< 0.64	< 0.58	< 0.90	< 0.62	< 0.62
Isobutane	ppbv	1.79	6.16	0.64	1.46	1.62	0.55	5.09	0.25	1.07	3.41	2.77
Isopentane	ppbv	1.16	7.57	0.39	0.92	0.85	0.53	17.9	10.4	13.8	2.08	1.38
Isoprene	ppbv	0.01	< 0.01	< 0.01	0.05	< 0.01	< 0.01	0.62	2.54	0.07	0.18	< 0.01
Isopropyl alcohol	ppbv	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.7	< 0.5	< 0.5
Isopropylbenzene	ppbv	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	0.01	0.01	< 0.02	0.02	< 0.01

Station		986	986	986	986	986	986	986	986	986	Reno	Reno
Sampled Date (MM/DD/YYYY)		2016/01/02	2016/01/05	2016/01/12	2016/01/13	2016/01/24	2016/03/31	2016/05/23	2016/06/07	2016/10/05	2016/01/03	2016/01/24
Sampled Time		11:45	18:30	18:55	16:55	15:50	08:55	02:25	22:25	18:40	23:35	00:10
Parameter	Unit	Result										
m,p-Xylene	ppbv	0.07	0.10	0.11	0.31	0.12	< 0.04	0.39	0.66	0.07	0.26	0.22
m-Diethylbenzene	ppbv	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.07	< 0.05	< 0.05
m-Ethyltoluene	ppbv	< 0.10	< 0.11	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.09	< 0.14	< 0.10	< 0.10
Methyl butyl ketone	ppbv	< 0.64	< 0.68	< 0.66	< 0.62	< 0.65	< 0.62	< 0.64	< 0.58	< 0.90	< 0.62	< 0.62
Methyl ethyl ketone	ppbv	< 0.4	< 0.4	< 0.4	0.5	< 0.4	< 0.4	< 0.4	0.6	< 0.5	1.3	< 0.4
Methyl isobutyl ketone	ppbv	1.6	< 0.5	1.9	< 0.5	0.8	2.0	1.6	2.5	3.0	< 0.5	< 0.5
Methyl methacrylate	ppbv	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.08	< 0.13	< 0.09	< 0.09
Methyl tert butyl ether	ppbv	< 0.04	< 0.04	< 0.04	0.09	< 0.04	< 0.04	< 0.04	< 0.03	< 0.05	< 0.04	< 0.04
Methylcyclohexane	ppbv	0.09	0.58	0.08	0.97	0.09	0.13	2.79	2.48	0.18	0.29	0.20
Methylcyclopentane	ppbv	0.09	0.47	0.09	0.20	0.11	0.03	4.53	3.67	0.63	0.25	0.20
Methylene chloride	ppbv	< 0.4	< 0.4	< 0.4	1.6	< 0.4	< 0.4	0.5	0.7	0.6	< 0.4	< 0.4
n-Butane	ppbv	4.29	15.5	1.29	3.05	3.11	0.56	16.5	4.87	7.73	8.14	5.63
n-Decane	ppbv	< 0.08	< 0.08	< 0.08	< 0.07	< 0.08	< 0.07	< 0.08	< 0.07	< 0.11	0.11	< 0.07
n-Dodecane	ppbv	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.7	< 0.5	< 0.5
n-Heptane	ppbv	0.09	0.50	0.06	1.82	0.10	0.08	2.45	2.10	0.13	0.25	0.15
n-Hexane	ppbv	0.29	1.84	0.22	0.74	0.28	0.04	8.59	6.59	1.59	0.77	0.43
n-Nonane	ppbv	0.02	0.03	0.02	0.07	0.02	< 0.01	0.09	0.10	0.03	0.07	0.04
n-Octane	ppbv	< 0.03	0.16	< 0.03	< 0.02	0.06	< 0.02	0.48	0.45	0.04	0.14	0.06
n-Pentane	ppbv	1.5	7.3	0.6	1.4	0.9	0.2	21.9	13.4	11.9	2.9	1.4
n-Propylbenzene	ppbv	< 0.06	< 0.07	< 0.07	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.09	< 0.06	< 0.06
n-Undecane	ppbv	< 0.6	< 0.7	< 0.7	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.9	< 0.6	< 0.6
Naphthalene	ppbv	< 0.6	< 0.7	< 0.7	< 0.6	< 0.6	< 0.6	3.0	1.0	< 0.9	< 0.6	< 0.6
o-Ethyltoluene	ppbv	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	0.01	0.01	< 0.02	0.03	0.02
o-Xylene	ppbv	0.01	0.02	0.02	0.13	0.03	< 0.01	0.10	0.09	0.03	0.12	0.08
p-Diethylbenzene	ppbv	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.20	< 0.07	< 0.05	< 0.05
p-Ethyltoluene	ppbv	< 0.09	< 0.09	< 0.09	0.09	< 0.09	< 0.09	< 0.09	< 0.08	< 0.13	< 0.09	< 0.09
Styrene	ppbv	< 0.05	< 0.05	< 0.05	0.08	< 0.05	< 0.05	0.05	< 0.05	< 0.07	0.08	< 0.05
Tetrachloroethylene	ppbv	< 0.05	< 0.05	< 0.05	0.14	< 0.05	< 0.05	< 0.05	< 0.05	< 0.07	< 0.05	< 0.05
Tetrahydrofuran	ppbv	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.7	< 0.5	< 0.5
Toluene	ppbv	0.32	0.41	0.15	0.38	0.21	0.02	1.89	1.77	0.16	1.83	0.86
trans-1,2-Dichloroethylene	ppbv	< 0.01	< 0.01	< 0.01	0.07	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01
trans-1,3-	ppbv	< 0.05	< 0.05	< 0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.07	< 0.05	< 0.05
trans-2-Butene	ppbv	0.08	< 0.01	< 0.01	0.04	0.04	< 0.01	0.03	0.02	< 0.02	0.59	0.05
trans-2-Pentene	ppbv	< 0.03	< 0.03	< 0.03	< 0.02	< 0.03	< 0.02	< 0.03	< 0.02	< 0.04	0.11	< 0.02

Station	986	986	986	986	986	986	986	986	986	Reno	Reno	
Sampled Date (MM/DD/	Sampled Date (MM/DD/YYYY)		2016/01/05	2016/01/12	2016/01/13	2016/01/24	2016/03/31	2016/05/23	2016/06/07	2016/10/05	2016/01/03	2016/01/24
Sampled Time	Sampled Time		18:30	18:55	16:55	15:50	08:55	02:25	22:25	18:40	23:35	00:10
Parameter	Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Trichloroethylene	ppbv	< 0.05	< 0.05	< 0.05	0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.07	< 0.05	< 0.05
Vinyl acetate	ppbv	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.7	< 0.5	< 0.5
Vinyl chloride	ppbv	< 0.03	< 0.03	< 0.03	0.08	< 0.03	< 0.02	< 0.03	< 0.02	< 0.04	< 0.02	< 0.02

APPENDIX C

Complaints with Monitored Data Correlation

Table C-1: C	Correlation AER Rej		INTS AND RE								
Station	Reported Date (MM/DD/YYYY)	Reported Time (MDT,HH:MM)	Monitored Time (MST, HH:MM)	SO2 (ppb)	TRS (ppb)	WSP (km/h)	WD	THC (ppm)	CH4 (ppm)	NMHC (ppm)	NMHC_max (ppm)
842	01/03/2015	17:24	17:00	0	0	4.4	WSW	2	1.9	0	0.02
842	01/09/2015	07:01	07:00	1	0	1.1	ESE	2.1	2.1	0	0
842	02/03/2015	07:01	07:00	0	0	3.6	SSE	1.9	1.9	0	0
842	02/16/2015	06:15	06:00	0	1	8	N	1.9	1.9	0	0
842	02/17/2015	21:00	21:00	0	0	6.5	S	1.9	1.9	0	0
842	02/27/2015	06:15	06:00	0	1	0.8	NE	1.9	1.9	0	0
842	02/28/2015	06:30	06:00	0	1	3.2	W	1.9	1.9	0	0
842	03/05/2015	07:01	07:00	0	0	3.8	SSW	1.86	1.85	0	0.01
842	03/09/2015	06:01	06:00	1	0	0.8	E	1.82	0.81	0	0
842	03/19/2015	09:00	10:00	0	0	8.6	ENE	n/a	n/a	n/a	n/a
842	03/23/2015	06:30	07:00	0	0	2.8	E	1.95	1.94	0	0
842	03/24/2015	23:00	0:00*	0	0	7.9	SSE	1.95	1.94	0	0
842	03/28/2015	06:30	05:00	0	0	2.9	WSW	1.86	1.85	0	0
842	03/30/2015	22:30	23:00	0	0	5.6	ENE	2.34	2.33	0	0
842	04/06/2015	06:01	07:00	0	0	5.6	ESE	1.94	1.93	0	0
842	04/11/2015	04:00	05:00	0	0	5.2	SE	1.86	1.85	0	0
842	04/19/2015	07:00	08:00	0	0	8.2	SW	1.92	1.9	0	0.01
842	04/20/2015	06:01	07:00	0	0	2.7	S	2.06	2.05	0	0
842	04/24/2015	05:30	06:00	0	0	13.5	ENE	1.89	1.88	0	0
842	04/29/2015	06:01	07:00	0	0	11.8	SW	1.86	1.86	0	0
842	05/05/2015	07:10	08:00	0	0	13.3	ENE	1.87	1.87	0	0
842	06/17/2015	08:01	09:00	0	1	5.6	ESE	1.84	1.83	0	0
842	06/19/2015	01:00	02:00	0	1	6.2	ENE	1.8	1.8	0	0
842	07/12/2015	08:00	09:00	0	n/a	8.3	SW	n/a	n/a	n/a	n/a
842	07/31/2015	22:50	23:00	0	0	4.3	NNE	1.86	1.85	0	0
842	08/07/2015	23:30	0:00*	0	0	4.5	ESE	1.95	1.95	0	0
842	08/09/2015	23:00	0:00*	0	0	1	SSE	1.94	1.94	0	0
842	08/21/2015	23:30	0:00*	0	0	0.6	E	1.98	1.98	0	0
842	08/30/2015	23:30	0:00*	0	0	14.7	SSW	1.92	1.92	0	0
842	09/06/2015	06:00	07:00	0	1	3.2	ENE	2.18	2.18	0	0
842	09/10/2015	00:36	01:00	0	0	3.4	SE	1.94	1.94	0	0
842	10/25/2015	08:00	09:00	n/a	n/a	1.4	ESE	n/a	n/a	n/a	n/a
842	10/29/2015	00:36	01:00	0	0	12.9	SSW	1.91	1.9	0	0
842	11/22/2015	20:17	20:00	0	0	0.7	SW	1.93	1.92	0	0

APPENDIX C

COMPLAINTS AND RESIDENT REPORTS WITH MONITORED DATA CORRELATION

Station	Reported Date (MM/DD/YYYY)	Reported Time (MDT,HH:MM)	Monitored Time (MST, HH:MM)	SO2 (ppb)	TRS (ppb)	WSP (km/h)	WD	THC (ppm)	CH4 (ppm)	NMHC (ppm)	NMHC_max (ppm)
842	11/23/2015	08:35	08:00	(ppb) 0	0	3.1	ENE	(ppm) 2.21	2.2	0	0
842	11/29/2015	01:00	01:00	0	0	11.5	SW	1.95	1.94	0	0.02
842	12/15/2015	09:02	09:00	0	0	7.1	W	1.94	1.94	0	0
842	12/17/2015	22:00	22:00	0	0	4.7	E	2.01	2	0	0
842	12/29/2015	07:16	07:00	0	0	7.8	SSW	2.01	2.03	0	0
842	01/04/2016	00:00	00:00	0	0.4	2.1	E	2.37	2.36	0	0.03
842	01/05/2016	00:00	00:00	0	0.4	2.1	E	2.08	2.06	0	0
842	01/18/2016	00:00	00:00	0.2	0.4	0.6	SSE	2.1	2.09	0	0
842	02/22/2016	07:20	07:00	n/a	n/a	11.3	SW	n/a	n/a	n/a	n/a
842	02/23/2016	04:30	04:00	0	0.2	9.1	WSW	1.98	1.96	0	0
842	02/23/2016	23:10	23:00	0	0.2	2.2	E	1.96	1.95	0	0
842	02/28/2016	00:20	00:00	0.2	0.3	8.1	NNW	1.96	1.95	0	0.02
842	03/09/2016	00:00	00:00	0.7	0.4	1.7	E	2.47	2.47	0	0
842	03/26/2016	00:00	01:00	0	0.3	2.9	E	1.97	1.95	0	0.01
842	04/29/2016	23:39	0:00*	0	0.3	7.2	WSW	1.98	1.98	0	0.01
842	07/12/2016	00:00	01:00	0.5	0	4.4	N	1.92	1.94	0	0
842	08/06/2016	00:00	01:00	0.1	0.7	5.4	ENE	2.09	2.09	0	0
842	09/09/2016	00:00	01:00	0	0.6	1	E	1.96	1.96	0	0
842	09/29/2016	00:00	01:00	0	0.7	4.4	ENE	2.38	2.38	0	0
842	10/12/2016	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
842	12/29/2016	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
986	01/27/2015	11:05	11:00	0	0	9.9	NE	1.9	1.9	0	0
986	03/10/2015	09:31	10:00	0	0	5.6	SE	1.89	1.9	0	0
986	08/16/2015	03:00	04:00	0	1	0.8	ESE	2.03	2.04	0	0
986	10/26/2015	08:00	09:00	0	0	2.6	SE	1.88	1.89	0	0
986	12/20/2015	05:30	05:00	0	0	1.4	ESE	3.12	2.18	0.96	1.46
986	12/28/2015	04:45	04:00	0	0	1.3	NE	2.36	2.32	0.05	0.17
986	01/28/2016	00:00	00:00	0	0.6	5.1	SSE	1.88	1.89	0	0
986	03/12/2016	00:00	01:00	0.3	0.3	3.6	E	1.9	1.9	0	0
986	12/08/2016	12:00	12:00	0.4	0.4	0.1	W	2.2	2.2	0	0
986	12/29/2016	12:00	12:00	0.1	0.2	2.3	ESE	1.98	1.98	0	0
Reno	01/09/2015	10:00	10:00	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Reno	01/10/2015	22:10	22:00	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Reno	01/11/2015	16:00	16:00	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Reno	02/18/2015	17:00	17:00	1	1	3.3	S	2.41	2.42	0	0
Reno	04/06/2015	18:00	19:00	0	0	3.9	SSE	1.94	1.94	0	0
Reno	04/27/2015	20:00	21:00	0	1	2	S	2.32	2.32	0	0
Reno	05/24/2015	12:00	13:00	0	0	5.3	SE	1.89	1.9	0	0.02

Station	Reported Date (MM/DD/YYYY)	Reported Time (MDT,HH:MM)	Monitored Time (MST, HH:MM)	SO2 (ppb)	TRS (ppb)	WSP (km/h)	WD	THC (ppm)	CH4 (ppm)	NMHC (ppm)	NMHC_max (ppm)
Reno	07/30/2015	22:30	23:00	0	0	2.1	SSW	2.37	2.37	0	0.04
Reno	11/26/2015	18:00	18:00	0	0	9.3	SW	1.93	1.92	0	0
Reno	12/30/2015	21:30	21:00	0	0	4.9	S	2.1	2.09	0	0.02
Reno	08/06/2016	00:00	01:00	0	0.2	7.6	E	1.88	1.88	0	0.1
Reno	12/29/2016	12:00	12:00	0	0.2	3.8	S	2.11	2.11	0	0
Note:											
n/a: Valid da	ı/a: Valid data is not available										
*: Monitored	d Date is Reported Da	ate plus 1 day due to									

